NEWS
ACA Meeting Includes Computing Sessions: 6 (3), 225
Bajwa, Param D.
AAPT Winter Meeting Accents Growth of Computers in Physics: 6 (6), 572
Organizers Announce Plans for Physics Computing '93: 6 (6), 573
Borchers, Robert R.
Albuquerque Meeting Brings News of Supercomputer Advances: 6 (1), 8
Donnelly, Denis
Science Educators Discuss Benefits of Symbolic Computation: 6 (6), 571
Giles, Roscoe
SIGGRAPH Presents Insights Through Images: 6 (6), 568
Holmes, Lewis M.
Physics Computing '92 Will Convene in Prague: 6 (2), 114
Orlando Exhibit Brings News of Educational Software Advances: 6 (2), 111
Physics Computing '92 Index of Authors: 6 (4), 328
Physics Computing '92 Offers Varied Program: 6 (4), 303
Stauffer, Dietrich
Computational Physicists Vie for the Gold: 6 (6), 567
Zeyher, Allen
Massive Parallelism Supports Lattice QCD Calculations: 6 (1), 7
Minimal Principle Facilitates Structure Determination of Large Molecule: 6 (3), 223
Object-Oriented Modeling Guides SSC DAQ Designers: 6 (5), 439
Software Deciphers Echoes of the Big Bang: 6 (6), 565
SPECIAL
FEATURES
Anderson, John
See Jacob, Robert
Baer, Howard, and William F. Long
Latest Software, Hardware Serve High-Energy Phenomenology: 6 (1), 24
Bitar, Khalil M., and Urs M. Heller
Lattice Field Simulations Press the Limits of Computational Physics: 6 (1), 33
Bourianoff, George, and Richard Talman
Accelerator Progress Relies on Computational Simulations: 6 (1), 14
Bowler, K. C., L. K. Chantler, D. C. Heggie, R.D. Kenway, D. J. Tildesley, A. S. Trew, and
D. J. Wallace
Physics Leads the Way at Edinburgh HPC Facilities: 6 (4), 334
Briggs, James M., and J. Andrew McCammon
Computation Unravels Mysteries of Molecular Biophysics: 6 (3), 238
Brooks, Eugene D. III
Massive Parallelism Overcomes Shared-Memory Limitations: 6 (2), 139
Bryson, Steve
See Butler, David M.
Virtual Reality Takes on Real Physics Applications: 6 (4), 346
Butler, David M., and Steve Bryson
Vector-Bundle Classes Form Powerful Tool for Scientific Visualization: 6 (6), 576
Chantler, L. K.
See Bowler, K. C.
Corden, M. J., C. H. Georgiopoulos, S. L. Linn, and S. Yossef
Computers Manage Complexity of High-Energy Experiments: 6 (1), 41
Crotinger, James A.
See Haney, Scott W.
Furlong, J. R.
See Zukas, J. A.
Georgiopoulos, C. H.
See Corden, M. J.
Giles, Roscoe, and Claudio Rebbi
Computational Center Develops Practical Experience in Parallel Computing: 6 (2), 122
Ghoshal, Uttam, and T. Van Duzer
Superconductivity Researchers Seek to Remove Computational Bottlenecks: 6 (6), 585
Haney, Scott W., and James A. Crotinger
C + + Proves Useful in Writing a Tokamak Systems Code: 6 (5), 450
Heggie, D. C.
See Bowler, K. C.
Heller, Urs M.
See Bitar, Khalil M.
Jacob, Robert, and John Anderson
Do-it-Yourself Massively Parallel Supercomputer Does Useful Physics: 6 (3), 244
Johnson, Christopher R., Robert S. MacLeod, and Mike A. Matheson
Computer Simulations Reveal Complexity of Electrical Activity in the Human Thorax: 6 (3), 230
Kenway, R. D.
See Bowler, K. C.
Linn, S. L.
See Corden, M. J.
Long, William F.
See Baer, Howard
MacLeod, Robert S.
See Johnson, Christopher R.
Matheson, Mike A.
See Johnson, Christoper R.
McAulay, Alastair D.
Researchers Look to Optics to Move Computer Technology Forward: 6 (6), 595
McCammon, J. Andrew
See Briggs, James M.
Mortensen, Paul
Japanese Physicists Command Powerful Supercomputer Resources: 6 (4), 339
Nishimura, Hiroshi
Dynamic Accelerator Modeling Uses Objects in Eiffel: 6 (5), 456
Omohundro, Stephen M.
Sather Provides Nonproprietary Access to Object-Oriented Programming: 6 (5), 444
Rebbi, Claudio
See Giles, Roscoe
Segletes, S. B.
See Zukas, J. A.
Sprott, J. C.
Simple Programs Create 3-D Images: 6 (2), 132
Talman, Richard
See Bourianoff, George
Tildesley, D. J.
See Bowler, K. C.
Trew, A. S.
See Bowler, K. C.
Van Duzer, T.
See Ghoshal, Uttam
Wallace, D. J.
See Bowler, K.C.
Youssef, S.
See Corden, M. J.
Zukas, J. A., J. R. Furlong, and S. B. Segletes
Hydrocodes Support Visualization of Shock-Wave Phenomena: 6 (2), 146
PEER-REVIEWED
PAPERS
Al-Beteri, A. A., and D. E. Raeside
A Monte Carlo electron transport code for the desktop computer: 6 (6), 633
Alexopoulos, P. S.
See Giles, R.
Andrew, Keith, and Charles G. Fleming
Space-time geometries characterized by solutions to the geodesic equations: 6 (5), 498
Beaufume, Pascale
See Fromont, Bruno
Bernstein, R.
Taking the generality out of general relativity: 6 (5), 463
Brown, Stewart A.
PANACEA: A model for numerical simulation codes: 6 (3), 262
Bruch, R.
See Lui, G.
Burns, Marshall
Visualizing nonlinear resonance in classical and quantum mechanics: 6 (5),483
Cameron, S. A.
Novel Fourier methods for boundary value problems: 6 (1), 71
Cant, G. P.
The high-speed single-pass bin sort: 6 (5), 469
Chen, Shiyi, and Xiaowne Shan
High-resolution turbulent simulations using the Connection Machine-2: 6 (6), 643
Collins, J. J., M. Fanciulli, R. G. Hohlfeld, D. C. Finch, G. v. H. Sandri, and E. S.
Shtatland
A random number generator based on the logit transform of the logistic variable: 6 (6), 630
Cusumano, Joseph P., Derchyan Lin, Kevin Morooney, and Louis J. Pepe
Global sensitivity analysis of a nonlinear system using animated basins of attraction: 6 (6), 647
De Groot, Anthony J.
See Hoover, William G.
Duncan, W. M.
See Estrera, J. P.
Eaton, Gareth R.
See Quine, Richard W.
Eaton, Sandra S.
See Quine, Richard W.
Estrera, J. P., W. M. Duncan, and S. R. Slaughter
Lineshape analysis for optical transitions in III-V semiconductors using a sequential simplex
procedure: 6 (4), 360
Fanciulli, M.
See Collins, J. J.
Finch, D. C.
See Collins, J. J.
Fleming, Charles G.
See Andrew, Keith
Fromont, Bruno, and Pascale Beaufume
Learning dynamical behaviors with explorer: 6 (6), 660
Fu, H., R. Giles, M. Mansuripur, and G. Patterson
Investigation of the effects of nanostructure on the observable behavior of magnetic thin film
usinglarge-scale computer simulation: 6 (6), 610
Fuelling, S.
See Lui, G.
Gathright, J.
See Walker, James S.
Giles, R., M. Mansuripur, and P. S. Alexopoulos
Micromagnetics of thin film cobalt-based media for magnetic recording: 6 (1), 53
See Fu, H.
Gubernatis, J. E.
See Somsky, W. R.
Hobbie, Russell K.
MacDose: A simulation for understanding radiological physics: 6 (4), 355
Hohlfeld, R. G.
See Collins, J. J.
Hoover, Carol G.
See Hoover, William G.
Hoover, William G., Anthony J. De Groot, and Carol G. Hoover
Massively parallel computer simulation of plane-strain elasticplastic flow via nonequilibrium
molecular dynamics and Lagrangian continuum mechanics: 6 (2), 155
Hsieh, Alexander, and Eran Yehudai
HIP: Symbolic highenergy physics calculations: 6 (3), 253
Kennedy, Jack
A MATHCAD-based method for enhanced system resolution studies: 6 (4), 377
Kristyan, Sandor, and Janos Szamosi
Reaction kinetic surfaces and isosurfaces of the catalytic hydrogenolysis of ethane and its
self-poisoning over Ni and Pd catalysts: 6 (5), 494
Leigh, John S. Jr.
See Stein, Alan D.
Leung, P. W., and Paul E. Oppenheimer
Implementation of the Lanczos algorithm for the Hubbard model on the Connection Machine
system: 6 (6), 603
Lin, Derchyan
See Cusumano, Joseph P.
Liu, G., S. Fuelling, and R. Bruch
Versatile CAMAC-PC/AT system for data acquisition and control in high resolution
extreme-ultraviolet ( EUV ) spectroscopy following ion-atom and ion-molecule collisions:6 (2),
168
Mansuripur, M.
See Fu, H.
See Giles, R.
Meredith, Roger W.
Numeric precision in FORTRAN computing: 6 (5), 506
Morooney, Kevin
See Cusumano, Joseph P.
Oppenheimer, Paul E.
See Leung, P. W.
Patterson, G.
See Fu, H.
Pepe, Louis J.
See Cusumano, Joseph P.
Quine, Richard W., George Rinard, Donald E. Rugg, Gareth R. Eaton and Sandra S.
Eaton
Design of magneticfield gradient coils for imaging: 6 (6), 656
Raeside, D. E.
See Al-Beteri, A. A.
Rinard, George
See Quine, Richard W.
Rugg, Donald E.
See Quine, Richard W.
Sandri, G. v. H.
See Collins, J. J.
Savage, C. M.
The quantum mechanics of a classically chaotic dissipative system: 6 (5), 513
Shan, Xiaowne
See Chen, Shiyi
Shtatland, E. S.
See Collins, J. J.
Slaughter, S. R.
See Estrera, J. P.
Smith, D. A.
Parametric cubic splinefitting programs for open and closed curves: 6 (5), 472
Somsky, W. R., and J. E. Gubernatis
A massively parallel implementation of the worldline quantum Monte Carlo method: 6 (2), 178
Stein, Alan D., Zhiyue Wang, and John S. Leigh Jr.
Computer-generated holograms: A simplified ray-tracing approach: 6 (4), 389
Stone, David H.
Pulsed laser codes for use as instructional tools: 6 (1), 77
Stoughton, C., and D. J. Sunners
Using multiple RISC CPUs in parallel to study charm quarks: 6 (4), 371
Summers, D. J.
See Stoughton, C.
Szamosi, Janos
See Kristyan, Sandor
Thompson, William J.
Algorithms for normalizing by least squares: 6 (4), 386
Tong, P. Y., and K. W. Yu
Multifractal scaling in a Sierpinski gasket: 6 (5), 478
Walker, James S., and J. Gathright
A transfer-matrix approach to one-dimensional quantum mechanics using Mathematica:6 (4),
393
Wang, Zhiyue
See Stein, Alan D.
Yehudai, Eran
See Hsieh, Alexander
Yu, K. W.
See Tong P. Y.
NUMERICAL RECIPES
Press, William H., and Saul A. Teukolsky
Adaptive Stepsize Runge-Kutta Integration: 6 (2), 188
Biconjugate Gradient Method for Sparse Linear Systems: 6 (4), 400
Fitting Straight Line Data with Errors in Both Coordinates: 6 (3), 274
Fresnel Integrals, Cosine and Sine Integrals: 6 (6), 670
Pade Approximants: 6 (1), 82
Portable Random Number Generators: 6 (5), 522
Teukolsky, Saul A.
See Press, William H.
COMPUTER
SIMULATIONS
Adler, Joan
See Silverman, Amihai
Argyrakis, Panos
Simulation of Diffusion-Controlled Chemical Reactions: 6 (5), 525
Batrouni, George
See Tobochnik, Jan
Gould, Harvey
See Tobochnik, Jan
Lee, Michael A., and Kevin E. Schmidt
Green's Function Monte Carlo: 6 (2), 192
Kaufman, Charles
See Srivastava, Niraj
Muller, Gerhard
See Srivastava, Niraj
Pandey, Ras B.
See Stauffer, Dietrich
Schmidt, Kevin E.
See Lee, Michael A.
Silverman, Amihai, and Joan Adler
Animated Simulated Annealing: 6 (3), 277
Srivastava, Niraj, Charles Kauffman, and Gerhard Muller
Hamiltonian Chaos III: 6 (1), 84
Stauffer, Dietrich, and Ras B. Pandey
Immunologically Motivated Simluations of Cellular Automata: 6 (4), 404
Tobochnik, Jan, George Batrouni, and Harvey Gould
Quantum Monte Carlo on a Lattice: 6 (6), 673
COMPUTERS
IN PHYSICS EDUCATION
Cook, David M., Russell Dubisch, Glenn Sowell, Patrick Tam, and Denis Donnelly
A Comparison of Several Symbol-Manipulating Programs: Part I: 6 (4), 411
A Comparison of Several Symbol-Manipulating Programs: Part II: 6 (5), 530
Donnelly, Denis
CIP's Third Annual Software Contest: The Winners: 6 (6), 686
See Cook, David M.
See Cook, David M.
Dubisch, Russell
See Cook, David M.
See Cook, David M.
Dworzecka, Maria
See Ehrlich, Robert
Ehrlich, Robert, Maria Dworzecka, and William M. MacDonald
Software Consortium Develops Simulations for Nine Physics Courses: 6 (1), 90
MacDonald, William M.
See Ehrlich, Robert
Redish, Edward F.
See Wilson, Jack M.
See Wilson, Jack M.
Sowell, Glenn
See Cook, David M.
See Cook, David M.
Tam, Patrick
See Cook, David M.
See Cook, David M.
Wilson, Jack M., and Edward F. Redish
The Comprehensive Unified Physics Learning Environment: Part I. Background and System
Operation: 6 (2), 202
The Comprehensive Unified Physics Learning Environment: Part II. The Basis for Integrated
Studies: 6 (3), 282
BOOK REVIEWS
Gastineau, John
From Newton to Mandelbrot: A Primer in Theoretical Physics, by D. Stauffer and H. E.
Stanley:6 (4), 424
Heil, Christopher
An Introduction to Wavelets, by Charles K. Chui: 6 (6), 697
Ten Lectures on Wavelets, by Ingrid Daubechies: 6 (6), 697
Lundberg, Matthew
Wavelets and Their Applications, Mary Beth Ruskai et al., eds.: 6 (6), 698
Wavelets: A Tutorial in Theory and Applications, by Charles K. Chui: 6 (6), 698
McKay, Susan R.
The Art of Modeling Dynamic Systems: Forecasting for Chaos, Randomness, and Determinism,
by Foster Morrison: 6 (4), 424
Mallinckrodt, A. John
Random Processes in Physical Systems: An Introduction to Probability-Based Computer
Simulations, by Charles A. Whitney: 6 (5), 555
Rapaport, Dennis C.
Parallel Algorithms in Computational Science, by D. W. Heermann and A. N.
Burkitt: 6 (5), 554
Robson, John W.
Physics: Cinema Classics: 6 (5), 556
PRODUCT REVIEWS
Blatt, S. Leslie and Harvey Gould
Recent Fractal and Chaos Software Releases Hint At Future Educational Potential Programs:6 (6), 702
Gjertsen, Margaret H.
Programming Directory: 6 (5), 541
Lane, Barton G.
X-arRAY: Accessing Extended Memory on the Cheap: 6 (1), 97
Locklair, Gary
Electronics Workbench Helps Students to Learn About Circuits: 6 (6), 700
Mandell, Myron
IRIS Indigo: High-Performance Low-End Workstation: 6 (3), 290
Renwick, Stephen P.
Plotting and Fitting Your Data: SigmaPlot for the Mac: 6 (2), 210
Roper, L. David
EXP Formats Equations at Low Cost: 6 (4), 426
SPREADSHEETS
Dory, Robert A.
Finite-Element Method in a Spreadsheet: 6 (2), 198
Wavelets Characterize Aperiodic Data: 6 (6), 681
Harris, Jeffrey H.
Wavelets Characterize Aperiodic Data: 6 (6), 681
VISUALIZATION
Wolff, Robert S.
Sounding Out Images: 6 (3), 287
Volume Visualization I: Basic Concepts and Applications: 6 (4), 421
Volume Visualization II: Ray-Tracing of Volume Data: 6 (6), 692
THE LAST WORD
Bailey, David H.
How Useful are Today's Parallel Computers?: 6 (2), 216
de Groot, Robert
Cost-Effective Computers Counter Threats to Physics Research and Education: 6 (4), 432
Dubois, Paul F.
Try Something New: Object-Oriented Thinking: 6 (5), 560
Lannutti, Joseph E.
Computers Undergird High-Energy Physics Research: 6 (1), 104
Whalen, Barry
A Superconducting Optical Computer May Appear In The Near Future: 6 (6), 712
Wolynes, Peter G.
Will Computer Design Become a Matter of Evolution?: 6 (3), 296
|