American Institute of Physics
home contact us sitemap
Computers in Physics


Index to Volume 6, 1992



ACA Meeting Includes Computing Sessions: 6 (3), 225

Bajwa, Param D.
AAPT Winter Meeting Accents Growth of Computers in Physics: 6 (6), 572
Organizers Announce Plans for Physics Computing '93: 6 (6), 573

Borchers, Robert R.
Albuquerque Meeting Brings News of Supercomputer Advances: 6 (1), 8

Donnelly, Denis
Science Educators Discuss Benefits of Symbolic Computation: 6 (6), 571

Giles, Roscoe
SIGGRAPH Presents Insights Through Images: 6 (6), 568

Holmes, Lewis M.
Physics Computing '92 Will Convene in Prague: 6 (2), 114
Orlando Exhibit Brings News of Educational Software Advances: 6 (2), 111
Physics Computing '92 Index of Authors: 6 (4), 328
Physics Computing '92 Offers Varied Program: 6 (4), 303

Stauffer, Dietrich
Computational Physicists Vie for the Gold: 6 (6), 567

Zeyher, Allen
Massive Parallelism Supports Lattice QCD Calculations: 6 (1), 7
Minimal Principle Facilitates Structure Determination of Large Molecule: 6 (3), 223
Object-Oriented Modeling Guides SSC DAQ Designers: 6 (5), 439
Software Deciphers Echoes of the Big Bang: 6 (6), 565


Anderson, John
See Jacob, Robert

Baer, Howard, and William F. Long
Latest Software, Hardware Serve High-Energy Phenomenology: 6 (1), 24

Bitar, Khalil M., and Urs M. Heller
Lattice Field Simulations Press the Limits of Computational Physics: 6 (1), 33

Bourianoff, George, and Richard Talman
Accelerator Progress Relies on Computational Simulations: 6 (1), 14

Bowler, K. C., L. K. Chantler, D. C. Heggie, R.D. Kenway, D. J. Tildesley, A. S. Trew,
and D. J. Wallace
Physics Leads the Way at Edinburgh HPC Facilities: 6 (4), 334

Briggs, James M., and J. Andrew McCammon
Computation Unravels Mysteries of Molecular Biophysics: 6 (3), 238

Brooks, Eugene D. III
Massive Parallelism Overcomes Shared-Memory Limitations: 6 (2), 139

Bryson, Steve
See Butler, David M.
Virtual Reality Takes on Real Physics Applications: 6 (4), 346

Butler, David M., and Steve Bryson
Vector-Bundle Classes Form Powerful Tool for Scientific Visualization: 6 (6), 576

Chantler, L. K.
See Bowler, K. C.

Corden, M. J., C. H. Georgiopoulos, S. L. Linn, and S. Yossef
Computers Manage Complexity of High-Energy Experiments: 6 (1), 41

Crotinger, James A.
See Haney, Scott W.

Furlong, J. R.
See Zukas, J. A.

Georgiopoulos, C. H.
See Corden, M. J.

Giles, Roscoe, and Claudio Rebbi
Computational Center Develops Practical Experience in Parallel Computing: 6 (2), 122

Ghoshal, Uttam, and T. Van Duzer
Superconductivity Researchers Seek to Remove Computational Bottlenecks: 6 (6), 585

Haney, Scott W., and James A. Crotinger
C + + Proves Useful in Writing a Tokamak Systems Code: 6 (5), 450

Heggie, D. C.
See Bowler, K. C.

Heller, Urs M.
See Bitar, Khalil M.

Jacob, Robert, and John Anderson
Do-it-Yourself Massively Parallel Supercomputer Does Useful Physics: 6 (3), 244

Johnson, Christopher R., Robert S. MacLeod, and Mike A. Matheson
Computer Simulations Reveal Complexity of Electrical Activity in the Human Thorax: 6 (3), 230

Kenway, R. D.
See Bowler, K. C.

Linn, S. L.
See Corden, M. J.

Long, William F.
See Baer, Howard

MacLeod, Robert S.
See Johnson, Christopher R.

Matheson, Mike A.
See Johnson, Christoper R.

McAulay, Alastair D.
Researchers Look to Optics to Move Computer Technology Forward: 6 (6), 595

McCammon, J. Andrew
See Briggs, James M.

Mortensen, Paul
Japanese Physicists Command Powerful Supercomputer Resources: 6 (4), 339

Nishimura, Hiroshi
Dynamic Accelerator Modeling Uses Objects in Eiffel: 6 (5), 456

Omohundro, Stephen M.
Sather Provides Nonproprietary Access to Object-Oriented Programming: 6 (5), 444

Rebbi, Claudio
See Giles, Roscoe

Segletes, S. B.
See Zukas, J. A.

Sprott, J. C.
Simple Programs Create 3-D Images: 6 (2), 132

Talman, Richard
See Bourianoff, George

Tildesley, D. J.
See Bowler, K. C.

Trew, A. S.
See Bowler, K. C.

Van Duzer, T.
See Ghoshal, Uttam

Wallace, D. J.
See Bowler, K.C.

Youssef, S.
See Corden, M. J.

Zukas, J. A., J. R. Furlong, and S. B. Segletes
Hydrocodes Support Visualization of Shock-Wave Phenomena: 6 (2), 146


Al-Beteri, A. A., and D. E. Raeside
A Monte Carlo electron transport code for the desktop computer: 6 (6), 633

Alexopoulos, P. S.
See Giles, R.

Andrew, Keith, and Charles G. Fleming
Space-time geometries characterized by solutions to the geodesic equations: 6 (5), 498

Beaufume, Pascale
See Fromont, Bruno

Bernstein, R.
Taking the generality out of general relativity: 6 (5), 463

Brown, Stewart A.
PANACEA: A model for numerical simulation codes: 6 (3), 262

Bruch, R.
See Lui, G.

Burns, Marshall
Visualizing nonlinear resonance in classical and quantum mechanics: 6 (5),483

Cameron, S. A.
Novel Fourier methods for boundary value problems: 6 (1), 71

Cant, G. P.
The high-speed single-pass bin sort: 6 (5), 469

Chen, Shiyi, and Xiaowne Shan
High-resolution turbulent simulations using the Connection Machine-2: 6 (6), 643

Collins, J. J., M. Fanciulli, R. G. Hohlfeld, D. C. Finch, G. v. H. Sandri, and E. S. Shtatland
A random number generator based on the logit transform of the logistic variable: 6 (6), 630

Cusumano, Joseph P., Derchyan Lin, Kevin Morooney, and Louis J. Pepe
Global sensitivity analysis of a nonlinear system using animated basins of attraction: 6 (6), 647

De Groot, Anthony J.
See Hoover, William G.

Duncan, W. M.
See Estrera, J. P.

Eaton, Gareth R.
See Quine, Richard W.

Eaton, Sandra S.
See Quine, Richard W.

Estrera, J. P., W. M. Duncan, and S. R. Slaughter
Lineshape analysis for optical transitions in III-V semiconductors using a sequential simplex
procedure: 6 (4), 360

Fanciulli, M.
See Collins, J. J.

Finch, D. C.
See Collins, J. J.

Fleming, Charles G.
See Andrew, Keith

Fromont, Bruno, and Pascale Beaufume
Learning dynamical behaviors with explorer: 6 (6), 660

Fu, H., R. Giles, M. Mansuripur, and G. Patterson
Investigation of the effects of nanostructure on the observable behavior of magnetic thin film using
large-scale computer simulation: 6 (6), 610

Fuelling, S.
See Lui, G.

Gathright, J.
See Walker, James S.

Giles, R., M. Mansuripur, and P. S. Alexopoulos
Micromagnetics of thin film cobalt-based media for magnetic recording: 6 (1), 53
See Fu, H.

Gubernatis, J. E.
See Somsky, W. R.

Hobbie, Russell K.
MacDose: A simulation for understanding radiological physics: 6 (4), 355

Hohlfeld, R. G.
See Collins, J. J.

Hoover, Carol G.
See Hoover, William G.

Hoover, William G., Anthony J. De Groot, and Carol G. Hoover
Massively parallel computer simulation of plane-strain elasticplastic flow via nonequilibrium
molecular dynamics and Lagrangian continuum mechanics: 6 (2), 155

Hsieh, Alexander, and Eran Yehudai
HIP: Symbolic highenergy physics calculations: 6 (3), 253

Kennedy, Jack
A MATHCAD-based method for enhanced system resolution studies: 6 (4), 377

Kristyan, Sandor, and Janos Szamosi
Reaction kinetic surfaces and isosurfaces of the catalytic hydrogenolysis of ethane and its
self-poisoning over Ni and Pd catalysts: 6 (5), 494

Leigh, John S. Jr.
See Stein, Alan D.

Leung, P. W., and Paul E. Oppenheimer
Implementation of the Lanczos algorithm for the Hubbard model on the Connection Machine
system: 6 (6), 603

Lin, Derchyan
See Cusumano, Joseph P.

Liu, G., S. Fuelling, and R. Bruch
Versatile CAMAC-PC/AT system for data acquisition and control in high resolution
extreme-ultraviolet ( EUV ) spectroscopy following ion-atom and ion-molecule collisions:
6 (2), 168

Mansuripur, M.
See Fu, H.
See Giles, R.

Meredith, Roger W.
Numeric precision in FORTRAN computing: 6 (5), 506

Morooney, Kevin
See Cusumano, Joseph P.

Oppenheimer, Paul E.
See Leung, P. W.

Patterson, G.
See Fu, H.

Pepe, Louis J.
See Cusumano, Joseph P.

Quine, Richard W., George Rinard, Donald E. Rugg, Gareth R. Eaton and Sandra S. Eaton
Design of magneticfield gradient coils for imaging: 6 (6), 656

Raeside, D. E.
See Al-Beteri, A. A.

Rinard, George
See Quine, Richard W.

Rugg, Donald E.
See Quine, Richard W.

Sandri, G. v. H.
See Collins, J. J.

Savage, C. M.
The quantum mechanics of a classically chaotic dissipative system: 6 (5), 513

Shan, Xiaowne
See Chen, Shiyi

Shtatland, E. S.
See Collins, J. J.

Slaughter, S. R.
See Estrera, J. P.

Smith, D. A.
Parametric cubic splinefitting programs for open and closed curves: 6 (5), 472

Somsky, W. R., and J. E. Gubernatis
A massively parallel implementation of the worldline quantum Monte Carlo method: 6 (2), 178

Stein, Alan D., Zhiyue Wang, and John S. Leigh Jr.
Computer-generated holograms: A simplified ray-tracing approach: 6 (4), 389

Stone, David H.
Pulsed laser codes for use as instructional tools: 6 (1), 77

Stoughton, C., and D. J. Sunners
Using multiple RISC CPUs in parallel to study charm quarks: 6 (4), 371

Summers, D. J.
See Stoughton, C.

Szamosi, Janos
See Kristyan, Sandor

Thompson, William J.
Algorithms for normalizing by least squares: 6 (4), 386

Tong, P. Y., and K. W. Yu
Multifractal scaling in a Sierpinski gasket: 6 (5), 478

Walker, James S., and J. Gathright
A transfer-matrix approach to one-dimensional quantum mechanics using Mathematica:
6 (4), 393

Wang, Zhiyue
See Stein, Alan D.

Yehudai, Eran
See Hsieh, Alexander

Yu, K. W.
See Tong P. Y.


Press, William H., and Saul A. Teukolsky
Adaptive Stepsize Runge-Kutta Integration: 6 (2), 188
Biconjugate Gradient Method for Sparse Linear Systems: 6 (4), 400
Fitting Straight Line Data with Errors in Both Coordinates: 6 (3), 274
Fresnel Integrals, Cosine and Sine Integrals: 6 (6), 670
Pade Approximants: 6 (1), 82
Portable Random Number Generators: 6 (5), 522

Teukolsky, Saul A.
See Press, William H.


Adler, Joan
See Silverman, Amihai

Argyrakis, Panos
Simulation of Diffusion-Controlled Chemical Reactions: 6 (5), 525

Batrouni, George
See Tobochnik, Jan

Gould, Harvey
See Tobochnik, Jan

Lee, Michael A., and Kevin E. Schmidt
Green's Function Monte Carlo: 6 (2), 192

Kaufman, Charles
See Srivastava, Niraj

Muller, Gerhard
See Srivastava, Niraj

Pandey, Ras B.
See Stauffer, Dietrich

Schmidt, Kevin E.
See Lee, Michael A.

Silverman, Amihai, and Joan Adler
Animated Simulated Annealing: 6 (3), 277

Srivastava, Niraj, Charles Kauffman, and Gerhard Muller
Hamiltonian Chaos III: 6 (1), 84

Stauffer, Dietrich, and Ras B. Pandey
Immunologically Motivated Simluations of Cellular Automata: 6 (4), 404

Tobochnik, Jan, George Batrouni, and Harvey Gould
Quantum Monte Carlo on a Lattice: 6 (6), 673


Cook, David M., Russell Dubisch, Glenn Sowell, Patrick Tam, and Denis Donnelly
A Comparison of Several Symbol-Manipulating Programs: Part I: 6 (4), 411
A Comparison of Several Symbol-Manipulating Programs: Part II: 6 (5), 530

Donnelly, Denis
CIP's Third Annual Software Contest: The Winners: 6 (6), 686
See Cook, David M.
See Cook, David M.

Dubisch, Russell
See Cook, David M.
See Cook, David M.

Dworzecka, Maria
See Ehrlich, Robert

Ehrlich, Robert, Maria Dworzecka, and William M. MacDonald
Software Consortium Develops Simulations for Nine Physics Courses: 6 (1), 90

MacDonald, William M.
See Ehrlich, Robert

Redish, Edward F.
See Wilson, Jack M.
See Wilson, Jack M.

Sowell, Glenn
See Cook, David M.
See Cook, David M.

Tam, Patrick
See Cook, David M.
See Cook, David M.

Wilson, Jack M., and Edward F. Redish
The Comprehensive Unified Physics Learning Environment: Part I. Background and System
Operation: 6 (2), 202
The Comprehensive Unified Physics Learning Environment: Part II. The Basis for Integrated
Studies: 6 (3), 282


Gastineau, John
From Newton to Mandelbrot: A Primer in Theoretical Physics, by D. Stauffer and H. E. Stanley:
6 (4), 424

Heil, Christopher
An Introduction to Wavelets, by Charles K. Chui: 6 (6), 697
Ten Lectures on Wavelets, by Ingrid Daubechies: 6 (6), 697

Lundberg, Matthew
Wavelets and Their Applications, Mary Beth Ruskai et al., eds.: 6 (6), 698
Wavelets: A Tutorial in Theory and Applications, by Charles K. Chui: 6 (6), 698

McKay, Susan R.
The Art of Modeling Dynamic Systems: Forecasting for Chaos, Randomness, and Determinism,
by Foster Morrison: 6 (4), 424

Mallinckrodt, A. John
Random Processes in Physical Systems: An Introduction to Probability-Based Computer
Simulations, by Charles A. Whitney: 6 (5), 555

Rapaport, Dennis C.
Parallel Algorithms in Computational Science, by D. W. Heermann and A. N. Burkitt: 6 (5), 554

Robson, John W.
Physics: Cinema Classics: 6 (5), 556


Blatt, S. Leslie and Harvey Gould
Recent Fractal and Chaos Software Releases Hint At Future Educational Potential Programs:
6 (6), 702

Gjertsen, Margaret H.
Programming Directory: 6 (5), 541

Lane, Barton G.
X-arRAY: Accessing Extended Memory on the Cheap: 6 (1), 97

Locklair, Gary
Electronics Workbench Helps Students to Learn About Circuits: 6 (6), 700

Mandell, Myron
IRIS Indigo: High-Performance Low-End Workstation: 6 (3), 290

Renwick, Stephen P.
Plotting and Fitting Your Data: SigmaPlot for the Mac: 6 (2), 210

Roper, L. David
EXP Formats Equations at Low Cost: 6 (4), 426


Dory, Robert A.
Finite-Element Method in a Spreadsheet: 6 (2), 198
Wavelets Characterize Aperiodic Data: 6 (6), 681

Harris, Jeffrey H.
Wavelets Characterize Aperiodic Data: 6 (6), 681


Wolff, Robert S.
Sounding Out Images: 6 (3), 287
Volume Visualization I: Basic Concepts and Applications: 6 (4), 421
Volume Visualization II: Ray-Tracing of Volume Data: 6 (6), 692


Bailey, David H.
How Useful are Today's Parallel Computers?: 6 (2), 216

de Groot, Robert
Cost-Effective Computers Counter Threats to Physics Research and Education: 6 (4), 432

Dubois, Paul F.
Try Something New: Object-Oriented Thinking: 6 (5), 560

Lannutti, Joseph E.
Computers Undergird High-Energy Physics Research: 6 (1), 104

Whalen, Barry
A Superconducting Optical Computer May Appear In The Near Future: 6 (6), 712

Wolynes, Peter G.
Will Computer Design Become a Matter of Evolution?: 6 (3), 296

Tables of Contents | PDF Articles | Source Code | Educational Software | Running Indexes | Online Journal Service | Home

[an error occurred while processing this directive]