2014 Chemistry Nobel Prize Journal Articles

AIP and AIP Publishing congratulate Eric Betzig of the Howard Hughes Medical Institute, Stefan W. Hell of the Max Planck Institute for Biophysical Chemistry and the German Cancer Research Center, and William E. Moerner of Stanford University for winning the 2014 Nobel Prize in Chemistry "for the development of super-resolved fluorescence microscopy."

On this page, you will find:

» Seminal papers by the Laureates (free access through 12/31/14)
» Further work by the Laureates related to SRFM and STED techniques (free access through 12/31/14)
» Additional articles related to SRFM and STED techniques in AIP Publishing journals (free access through 12/31/14)
» From OSA Publishing—more than 150 related articles and conference proceedings (free access for 60 days)

2014 Chemistry Nobel Prize Resources →

Seminal Papers by the Laureates (free access through 12/31/14)

Superresolution fluorescence nearfield scanning optical microscopy
A. Harootunian, E. Betzig, M. Isaacson and A. Lewis
Appl. Phys. Lett. 49 , 674 (1986)

Collection mode nearfield scanning optical microscopy
E. Betzig, M. Isaacson and A. Lewis
Appl. Phys. Lett. 51 , 2088 (1987) 

Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope
M. Straub and S. W. Hell
Appl. Phys. Lett. 73 , 1769 (1998) 

Twophoton excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research
P. E. Hänninen, S. W. Hell, J. Salo, E. Soini and C. Cremer
Appl. Phys. Lett. 66, 1698 (1995) 

Subresolution axial distance measurements in far-field fluorescence microscopy with precision of 1 nanometer
Michael Schmidt, Matthias Nagorni, Stefan W. Hell
Rev. Sci. Instrum. 71, 2742 (2000)

Stimulated emission depletion microscopy with an offset depleting beam
T. A. Klar, M. Dyba and S. W. Hell
Appl. Phys. Lett. 78 , 393 (2001) 

Methods of single-molecule fluorescence spectroscopy and microscopy
W. E. Moerner and David P. Fromm
Rev. Sci. Instrum. 74 , 3597 (2003) 

The double-helix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision
Hsiao-lu D. Lee, Steffen J. Sahl, Matthew D. Lew and W. E. Moerner
Appl. Phys. Lett. 100 , 153701 (2012)

Further work by the Laureates related to SRFM and STED techniques (free access through 12/31/14)

Measurement of the 4Piconfocal point spread function proves 75 nm axial resolution
S. W. Hell, S. Lindek, C. Cremer and E. H. K. Stelzer
Appl. Phys. Lett. 64 , 1335 (1994) 

Potential of confocal microscopes to resolve in the 50–100 nm range
M. Schrader, S. W. Hell and H. T. M. van der Voort
Appl. Phys. Lett. 69 , 3644 (1996)

Three-dimensional super-resolution with a 4Pi-confocal microscope using image restoration
M. Schrader, S. W. Hell and H. T. M. van der Voort
J. Appl. Phys. 84 , 4033 (1998)

Ultrafast dynamics microscopy
M. Dyba, T. A. Klar, S. Jakobs and S. W. Hell
Appl. Phys. Lett. 77 , 597 (2000) 

Depolarization by high aperture focusing
K. Bahlmann and S. W. Hell
Appl. Phys. Lett. 77 , 612 (2000) 

Image amplification and novelty filtering with a photorefractive polymer
Arosha Goonesekera, Daniel Wright and W. E. Moerner
Appl. Phys. Lett. 76 , 3358 (2000)

Single sharp spot in fluorescence microscopy of two opposing lenses
C. M. Blanca, J. Bewersdorf and S. W. Hell
Appl. Phys. Lett. 79 , 2321 (2001)

Single-molecule optical spectroscopy of autofluorescent proteins
W. E. Moerner
J. Chem. Phys. 117 , 10925 (2002)

High-performance photorefractive organic glass with near-infrared sensitivity
Oksana Ostroverkhova, W. E. Moerner, Meng He and Robert J. Twieg
Appl. Phys. Lett. 82 , 3602 (2003) ; http://dx.doi.org/10.1063/1.1577214

Laser-diode-stimulated emission depletion microscopy
V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup and S. W. Hell
Appl. Phys. Lett. 82 , 3125 (2003) ; http://dx.doi.org/10.1063/1.1571656

Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures
J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner and L. Hesselink
Appl. Phys. Lett. 85 , 648 (2004) ; http://dx.doi.org/10.1063/1.1774270

Method for trapping and manipulating nanoscale objects in solution
Adam E. Cohen and W. E. Moerner
Appl. Phys. Lett. 86 , 093109 (2005) ; http://dx.doi.org/10.1063/1.1872220

Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities
Kelley Rivoire, Anika Kinkhabwala, Fariba Hatami, W. Ted Masselink, Yuri Avlasevich, Klaus Müllen, W. E. Moerner and Jelena Vučković
Appl. Phys. Lett. 95 , 123113 (2009) ; http://dx.doi.org/10.1063/1.3232233

Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane
Majid Badieirostami, Matthew D. Lew, Michael A. Thompson and W. E. Moerner
Appl. Phys. Lett. 97 , 161103 (2010) ; http://dx.doi.org/10.1063/1.3499652

Improved transducer correction for standingwave ultrasonic velocity measurements
H. I. Ringermacher, W. E. Moerner and J. G. Miller
J. Appl. Phys. 45 , 549 (1974) ; http://dx.doi.org/10.1063/1.1663281

Phase sensitive detection of persistent spectral holes using synchronous ultrasonic modulation
W. E. Moerner and A. L. Huston
Appl. Phys. Lett. 48 , 1181 (1986) ; http://dx.doi.org/10.1063/1.96462

Fast burning of persistent spectral holes in small laser spots using photongated materials
W. E. Moerner, T. P. Carter and C. Bräuchle
Appl. Phys. Lett. 50 , 430 (1987) ; http://dx.doi.org/10.1063/1.98164

Statistical fine structure in the inhomogeneously broadened electronic origin of pentacene in pterphenyl
T. P. Carter, M. Manavi and W. E. Moerner
J. Chem. Phys. 89 , 1768 (1988) ; http://dx.doi.org/10.1063/1.455123

Intracavity frequency doubling of a Nd:YAG laser with an organic nonlinear optical crystal
Stephen Ducharme, W. P. Risk, W. E. Moerner, Victor Y. Lee, R. J. Twieg and G. C. Bjorklund
Appl. Phys. Lett. 57 , 537 (1990) ; http://dx.doi.org/10.1063/1.103640

C60 sensitization of a photorefractive polymer
S. M. Silence, C. A. Walsh, J. C. Scott and W. E. Moerner
Appl. Phys. Lett. 61 , 2967 (1992) ; http://dx.doi.org/10.1063/1.108033

Electric fielddependent nonphotorefractive gratings in a nonlinear photoconducting polymer
S. M. Silence, M. C. J. M. Donckers, C. A. Walsh, D. M. Burland, W. E. Moerner and R. J. Twieg
Appl. Phys. Lett. 64 , 712 (1994) ; http://dx.doi.org/10.1063/1.111043

Excitation of a single molecule on the surface of a spherical microcavity
D. J. Norris, M. Kuwata-Gonokami and W. E. Moerner
Appl. Phys. Lett. 71 , 297 (1997) ; http://dx.doi.org/10.1063/1.119554

High performance photorefractive polymer with improved stability
A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg and W. E. Moerner
Appl. Phys. Lett. 70 , 1515 (1997) ; http://dx.doi.org/10.1063/1.118604

High-speed photorefractive polymer composites
D. Wright, M. A. Dı́az-Garcı́a, J. D. Casperson, M. DeClue, W. E. Moerner and R. J. Twieg
Appl. Phys. Lett. 73 , 1490 (1998) ; http://dx.doi.org/10.1063/1.122182

High-performance photorefractive polymer composite with 2-dicyanomethylen-3-cyano-2,5-dihydrofuran chromophore
Daniel Wright, Ulrich Gubler, Yeonsuk Roh, W. E. Moerner, Meng He and Robert J. Twieg
Appl. Phys. Lett. 79 , 4274 (2001) ; http://dx.doi.org/10.1063/1.1428120

Additional articles related to SRFM and STED techniques in AIP Publishing journals (free access through 12/31/14)

Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam
B. R. Boruah and M. A. A. Neil
Rev. Sci. Instrum. 80, 013705 (2009); http://dx.doi.org/10.1063/1.3072663

Far-field optical nanoscopy based on continuous wave laser stimulated emission depletion
Cuifang Kuang, Wei Zhao and Guiren Wang
Rev. Sci. Instrum. 81, 053709 (2010); http://dx.doi.org/10.1063/1.3432001

Performance improvement in nanoparticle-assisted stimulated-emission-depletion nanoscopy
Yonatan Sivan

Appl. Phys. Lett. 101, 021111 (2012); http://dx.doi.org/10.1063/1.4735319

Tuning donut profile for spatial resolution in stimulated emission depletion microscopy
Bhanu Neupane, Fang Chen, Wei Sun, Daniel T. Chiu and Gufeng Wang
Rev. Sci. Instrum. 84, 043701 (2013); http://dx.doi.org/10.1063/1.4799665

Taylor series expansion based multidimensional image reconstruction for confocal and 4pi microscopy
Shilpa Dilipkumar and Partha Pratim Mondal
Appl. Phys. Lett. 103, 073702 (2013); http://dx.doi.org/10.1063/1.4817928

Spatial filtering nearly eliminates the side-lobes in single- and multi-photon 4pi-type-C super-resolution fluorescence microscopy
Kavya M., Raju Regmi and Partha P. Mondal
Rev. Sci. Instrum. 84, 093704 (2013); http://dx.doi.org/10.1063/1.4820922

Perspective: Reaches of chemical physics in biology
Martin Gruebele and D. Thirumalai
J. Chem. Phys. 139, 121701 (2013); http://dx.doi.org/10.1063/1.4820139

Annular solid-immersion lenslet array super-resolution optical microscopy
Z. L. Liau
J. Appl. Phys. 112, 083110 (2012); http://dx.doi.org/10.1063/1.4761813

A bisected pupil for studying single-molecule orientational dynamics and its application to three-dimensional super-resolution microscopy
Adam S. Backer, Mikael P. Backlund, Alexander R. von Diezmann, Steffen J. Sahl and W. E. Moerner
Appl. Phys. Lett. 104, 193701 (2014); http://dx.doi.org/10.1063/1.4876440

2014 Chemistry Nobel Prize Resources →