A sampling of recent data collected by AIP's Statistical Research Center.
Employment Type for Physics PhDs One Year After Degree, Classes of 2015 & 2016 Combined

- Postdoc: 47%
- Potentially Permanent Position: 40%
- Other Temporary Position: 7%
- Unemployed: 6%

Initial Employment of Physics PhDs, 1979 through 2016

In 1991, the survey questionnaire was changed to measure "other temporary" employment as a separate category. Data are limited to PhDs who earned their degrees from a US university and remained in the US.
Type of Employment of New Physics PhDs by Employment Sector, Classes of 2015 & 2016 Combined

<table>
<thead>
<tr>
<th>Sector of Employment</th>
<th>Initial Employment Type</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Postdoc %</td>
<td>Potentially Permanent %</td>
</tr>
<tr>
<td>Academic</td>
<td>75</td>
<td>16</td>
</tr>
<tr>
<td>Private</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>Government</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>Other</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Note: Data includes only US-educated physics PhDs who remained in the US after earning their degrees. Data are based on the responses of 593 postdocs, 514 individuals working in potentially permanent positions, and 93 individuals working in "other temporary positions."

Employment Field of New Physics PhDs, Classes of 2015 & 2016 Combined

- Postdoctoral Position
 - Employment in physics - same subfield as dissertation: 69%
 - Employment in physics - different subfield from dissertation: 12%
 - Other: 19%

- Other Temporary Position
 - Employment in physics - same subfield as dissertation: 53%
 - Employment in physics - different subfield from dissertation: 22%
 - Other: 25%

- Potentially Permanent Position
 - Employment in physics - same subfield as dissertation: 66%
 - Employment in physics - different subfield from dissertation: 16%
 - Other: 18%

Other Fields:
- Computer software: 23%
- Engineering: 14%
- Business or finance: 11%
- Other sciences: 9%
- Education: 3%
- Medical services: 1%
- Other: 5%

Note: Employment in physics means an individual's primary or secondary employment field was in physics or astronomy. Data includes only US-educated PhDs who remained in the US after earning their degrees.
Starting Salaries for New Physics PhDs, Classes of 2015 & 2016 Combined

Data represents only US-educated PhDs who remained in the US after earning their degree. The full starting salary range is represented by the lines extending to each side of the box. The box represents the middle 50% (25th to 75th percentile) of the salaries. The vertical line within the box represents the median starting salary for the sector. Government Lab includes federally funded research and development centers, e.g., Los Alamos National Laboratory. UARI is university affiliated research institute. The data for PhDs holding potentially permanent positions in academe include salaries based on 9-10 and 11-12 month commitments and have not been adjusted. Data are based on respondents holding potentially permanent positions in the private sector (214) and in universities and 4-year colleges (80), postdocs in government labs (78) and universities and UARIs (257), and "other temporary positions" in universities and 4-year colleges (24).
Status of Physics Bachelors One Year After Degree, Classes of 2017 & 2018 Combined

<table>
<thead>
<tr>
<th>Graduate Study</th>
<th>Unemployed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics & Astronomy 28%</td>
<td>5%</td>
</tr>
<tr>
<td>Other Fields 19%</td>
<td></td>
</tr>
</tbody>
</table>

Figure based on 5,137 individuals.

Status of Physics Bachelors One Year After Degree, Classes of 1996 through 2018

- Employed
- Physics or Astronomy Graduate Study
- Graduate Study in Other Fields
- Unemployed

Degree Class

Percent

60% 50% 40% 30% 20% 10% 0%
Field of Employment for New Physics Bachelors in the Private Sector, Classes of 2017 & 2018 Combined

STEM refers to natural science, technology, engineering and mathematics. Regularly solving technical problems refers to respondents who selected “Daily”, “Weekly”, or “Monthly” on a four-point scale that also included “Rarely or Never”.

Starting Salaries for New Physics Bachelors, Classes of 2017 & 2018 Combined

Figure only includes bachelors in full-time, newly accepted positions. The full salary range is represented by the lines extending to each side of the box. The box represents the middle 50% (25th to 75th percentile) of the salaries. The vertical line within the box represents the median starting salary for the sector. Solves technical problems refers to respondents who selected “Daily”, “Weekly”, or “Monthly” on a four-point scale that also included “Rarely or Never” when asked how frequently they solved technical problems in their position.
Knowledge and Skills Used by New Physics Bachelors Employed in the Private Sector, Classes of 2017 & 2018 Combined

These and other graphics are available for download from www.aip.org/statistics

e-Updates
You can sign up to receive e-mail alerts that notify you when we post a new report or resource. Visit www.aip.org/statistics/e_updates to sign up. We will send you an e-Update only when we post something new. You should receive no more than 20 messages in a year.

Follow Us on Twitter
The Statistical Research Center is your source for data on education, careers, and diversity in physics, astronomy and other physical sciences. Follow us at @AIPStatistics