Search results
Displaying 1 - 7 of total 7 results:
Early years; undergraduate at Harvard University, 1930-1934, and growth of interest in astronomy; graduate student and postdoctoral fellow at Harvard University, 1934-1941; social and scientific life, atomic physics work; Robert McMath and character of McMath-Hulbert observatory; mechanical engineering work in World War II; chairmanship of University of Michigan Astronomy Department, 1946-1960; optical and radio telescopes and funding; work on solar infrared and element abundances; Chairman and Director at Harvard, 1960-1971; relations with Smithsonian Institution, other politics, fund-raising; work on orbiting solar observatories; relations with National Aeronautics and Space Administration (NASA), the Space Science Board, Apollo Telescope Mount, the U.S. Navy and U.S. Air Force (Scientific Advisory Board, Project West Ford), and National Science Foundation (NSF); International Astronomical Union (IAU) and Chinese membership; editorial positions. An addendum dictated by Goldberg describes his six years as Director of Kitt Peak Observatory, particularly his relations with the Users Committee. Also prominently mentioned are: Lawrence Hugh Aller, Lloyd Viel Berkner, Victor Blanco, Bart Jan Bok, Wilbur Bolton, Wallace Brode, David Crawford, Leland Cunningham, Heber D. Curtis, Alex Dalgarno, Armin Deutsch, James Fletcher, Jesse Leonard Greenstein, Christian Archibald Herter, W. A. Hiltner, Harry Hulbert, Gerard Peter Kuiper, Francis McMath, Donald Howard Menzel, James E. Miller, Marcel G. Minnaert, George Mueller, Homer Edward Newell, Edward Ney, Randall Robertson, Frank Schlesinger, Harlow Shapley, George H. Shortley, Otto Struve, James Webb, Richard Wheeler, Fred Whipple, John Wolbach, S. B. Wolbach; Apollo Telescope Mount, Associated Universities for Research in Astronomy, Associated Universities, Inc., Ball Brothers, Goddard Space Flight Center, Green Bank Observatory, High Energy Astronomy Observatory, Mount Wilson and Palomar Observatories, National Academy of Sciences (U.S.), Naval Research Laboratory (U.S.), Orbiting Solar Observatory, United States Navy, and University of Michigan.
Early years; undergraduate at Harvard University, 1930-1934, and growth of interest in astronomy; graduate student and postdoctoral fellow at Harvard University, 1934-1941; social and scientific life, atomic physics work; Robert McMath and character of McMath-Hulbert observatory; mechanical engineering work in World War II; chairmanship of University of Michigan Astronomy Department, 1946-1960; optical and radio telescopes and funding; work on solar infrared and element abundances; Chairman and Director at Harvard, 1960-1971; relations with Smithsonian Institution, other politics, fund-raising; work on orbiting solar observatories; relations with National Aeronautics and Space Administration (NASA), the Space Science Board, Apollo Telescope Mount, the U.S. Navy and U.S. Air Force (Scientific Advisory Board, Project West Ford), and National Science Foundation (NSF); International Astronomical Union (IAU) and Chinese membership; editorial positions. An addendum dictated by Goldberg describes his six years as Director of Kitt Peak Observatory, particularly his relations with the Users Committee. Also prominently mentioned are: Lawrence Hugh Aller, Lloyd Viel Berkner, Victor Blanco, Bart Jan Bok, Wilbur Bolton, Wallace Brode, David Crawford, Leland Cunningham, Heber D. Curtis, Alex Dalgarno, Armin Deutsch, James Fletcher, Jesse Leonard Greenstein, Christian Archibald Herter, W. A. Hiltner, Harry Hulbert, Gerard Peter Kuiper, Francis McMath, Donald Howard Menzel, James E. Miller, Marcel G. Minnaert, George Mueller, Homer Edward Newell, Edward Ney, Randall Robertson, Frank Schlesinger, Harlow Shapley, George H. Shortley, Otto Struve, James Webb, Richard Wheeler, Fred Whipple, John Wolbach, S. B. Wolbach; Apollo Telescope Mount, Associated Universities for Research in Astronomy, Associated Universities, Inc., Ball Brothers, Goddard Space Flight Center, Green Bank Observatory, High Energy Astronomy Observatory, Mount Wilson and Palomar Observatories, National Academy of Sciences (U.S.), Naval Research Laboratory (U.S.), Orbiting Solar Observatory, United States Navy, and University of Michigan.
Early years; undergraduate at Harvard University, 1930-1934, and growth of interest in astronomy; graduate student and postdoctoral fellow at Harvard University, 1934-1941; social and scientific life, atomic physics work; Robert McMath and character of McMath-Hulbert observatory; mechanical engineering work in World War II; chairmanship of University of Michigan Astronomy Department, 1946-1960; optical and radio telescopes and funding; work on solar infrared and element abundances; Chairman and Director at Harvard, 1960-1971; relations with Smithsonian Institution, other politics, fund-raising; work on orbiting solar observatories; relations with National Aeronautics and Space Administration (NASA), the Space Science Board, Apollo Telescope Mount, the U.S. Navy and U.S. Air Force (Scientific Advisory Board, Project West Ford), and National Science Foundation (NSF); International Astronomical Union (IAU) and Chinese membership; editorial positions. An addendum dictated by Goldberg describes his six years as Director of Kitt Peak Observatory, particularly his relations with the Users Committee. Also prominently mentioned are: Lawrence Hugh Aller, Lloyd Viel Berkner, Victor Blanco, Bart Jan Bok, Wilbur Bolton, Wallace Brode, David Crawford, Leland Cunningham, Heber D. Curtis, Alex Dalgarno, Armin Deutsch, James Fletcher, Jesse Leonard Greenstein, Christian Archibald Herter, W. A. Hiltner, Harry Hulbert, Gerard Peter Kuiper, Francis McMath, Donald Howard Menzel, James E. Miller, Marcel G. Minnaert, George Mueller, Homer Edward Newell, Edward Ney, Randall Robertson, Frank Schlesinger, Harlow Shapley, George H. Shortley, Otto Struve, James Webb, Richard Wheeler, Fred Whipple, John Wolbach, S. B. Wolbach; Apollo Telescope Mount, Associated Universities for Research in Astronomy, Associated Universities, Inc., Ball Brothers, Goddard Space Flight Center, Green Bank Observatory, High Energy Astronomy Observatory, Mount Wilson and Palomar Observatories, National Academy of Sciences (U.S.), Naval Research Laboratory (U.S.), Orbiting Solar Observatory, United States Navy, and University of Michigan.
Life of his father, Karl Schwarzschild; father's scientific relationships in Göttingen (Felix Klein, David Hilbert); move to Potsdam, 1909; relations with Potsdam and Berlin scientists (Albert Einstein, Karl Sommerfeld); father's Jewish background concealed. M. Schwarzschild's youth in Göttingen and Berlin; early education, interest in astronomy and mathematics. Undergraduate at Göttingen Universität (Hans Kienle, Richard Courant, Neugebauer), 1930-1933; graduate work at Gottingen Observatory, 1933-1935; his reaction to Nazism. Introduction to astrophysics (Arthur Eddington), interest in stellar interiors and stellar evolution; contacts with other astronomers from Gottingen Observatory (Otto Heckmann, Kienle, Rupert Wildt); comments on general relativity; interest in pulsating stars; leaves Göttingen, 1936. Postdoctorate at Oslo (Svein Rosseland); Jan Oort, Ejnar Hertzsprung; mechanical analog computer for computations in astrophysics and celestial mechanics; comments on development of theory of stellar interiors, 1939-1950. To Harvard College Observatory (Harlow Shapley), 1938; C. Payne-Gaposchkin, Bart Bok; comparison of European and American observational style, social scene; Barbara Schwarzschild's difficulties as female astronomer; contacts with S. Chandrasekhar and other astronomers. Tour of the United States; visits Mt. Wilson Observatory (Wilhelm Baade, Rudolph Minkowski, Edwin Hubble, Milton Humason), 1940; Shapley's relationship with Mt. Wilson staff. Harvard (Fred Whipple), 1938-1941; Shapley as a leader; astronomy summer school at Harvard; work on Cepheid variables in M3 (Bok, Chandrasekhar); overall impact on Schwarzschild of Harvard period. Columbia University (Jan Schildt, I. I. Rabi), 1940-1942; difficulties there; origin and funding of Thomas Watson Astronomical Computing Center; discussion of cosmology in the late 1930s; contacts with physicists (Enrico Fermi). In U.S. Army, 1941-1945; enters as private, teaches math to recruits; refuses invitation to Los Alamos; transferred to Aberdeen Proving Ground, dissatisfaction there; to officers training school, does bombing analysis for Italian campaign. Work relating to stellar interiors and evolution, 1938-1946; nuclear energy source ideas (Hans Bethe, Fermi); Eddington, Gerard Kuiper, Chandrasekhar, G. Keller; German astronomers during World War II (Ludwig Biermann). Discussion of wife's career and her role in his career. Early ideas about red giants (Öpik, Herman Bondi, Fred Hoyle), 1946-1950. Work on acoustic wave energy transport (R. Richardson, Gold); work on chemical composition differences in stellar populations. To Princeton University (Spitzer, H. N. Russell), 1947; Project Matterhorn (start of bomb and fusion projects); relationship with Russell. Stellar evolution work in the 1950s; computer work (John Von Neumann, Richard Härm), mid-1950s; collaboration with Allan Sandage evolving a stellar model, 1952; computing towards red giants; observational cluster work, 1951; ages, metallicity, and the Big Bang; beginnings of "astrophysical" cosmology. Evolution theory after late 1950s; effect of computers on theoretical progress; relation of evolution theory to cosmology; general comments on his work in stellar evolution; interactions with Robert Dicke; views on cosmology, general relativity. Need for better solar convection work leads to use of balloons (James Van Allen); post-Sputnik funding; on cooperation with industry and engineers; Stratoscope II (Bob Danielson, Spitzer). Years advising the National Science Foundation, President's Science Advisory Committee, 1959-1976, and National Aeronautics and Space Administration (Von Neumann), to 1969; The International Astronomical Union, 1964-1970; American Asronomical Society, 1967-1973. Informal advisor to various observatories: Kitt Peak National Observatory, Mt. Wilson-Palomar Observatories, Carnegie Southern Observatory. Recent work on galactic structure. Reflects on importance of ethical standards; his feelings about religion and nature.
Life of his father, Karl Schwarzschild; father's scientific relationships in Göttingen (Felix Klein, David Hilbert); move to Potsdam, 1909; relations with Potsdam and Berlin scientists (Albert Einstein, Karl Sommerfeld); father's Jewish background concealed. M. Schwarzschild's youth in Göttingen and Berlin; early education, interest in astronomy and mathematics. Undergraduate at Göttingen Universität (Hans Kienle, Richard Courant, Neugebauer), 1930-1933; graduate work at Gottingen Observatory, 1933-1935; his reaction to Nazism. Introduction to astrophysics (Arthur Eddington), interest in stellar interiors and stellar evolution; contacts with other astronomers from Gottingen Observatory (Otto Heckmann, Kienle, Rupert Wildt); comments on general relativity; interest in pulsating stars; leaves Göttingen, 1936. Postdoctorate at Oslo (Svein Rosseland); Jan Oort, Ejnar Hertzsprung; mechanical analog computer for computations in astrophysics and celestial mechanics; comments on development of theory of stellar interiors, 1939-1950. To Harvard College Observatory (Harlow Shapley), 1938; C. Payne-Gaposchkin, Bart Bok; comparison of European and American observational style, social scene; Barbara Schwarzschild's difficulties as female astronomer; contacts with S. Chandrasekhar and other astronomers. Tour of the United States; visits Mt. Wilson Observatory (Wilhelm Baade, Rudolph Minkowski, Edwin Hubble, Milton Humason), 1940; Shapley's relationship with Mt. Wilson staff. Harvard (Fred Whipple), 1938-1941; Shapley as a leader; astronomy summer school at Harvard; work on Cepheid variables in M3 (Bok, Chandrasekhar); overall impact on Schwarzschild of Harvard period. Columbia University (Jan Schildt, I. I. Rabi), 1940-1942; difficulties there; origin and funding of Thomas Watson Astronomical Computing Center; discussion of cosmology in the late 1930s; contacts with physicists (Enrico Fermi). In U.S. Army, 1941-1945; enters as private, teaches math to recruits; refuses invitation to Los Alamos; transferred to Aberdeen Proving Ground, dissatisfaction there; to officers training school, does bombing analysis for Italian campaign. Work relating to stellar interiors and evolution, 1938-1946; nuclear energy source ideas (Hans Bethe, Fermi); Eddington, Gerard Kuiper, Chandrasekhar, G. Keller; German astronomers during World War II (Ludwig Biermann). Discussion of wife's career and her role in his career. Early ideas about red giants (Öpik, Herman Bondi, Fred Hoyle), 1946-1950. Work on acoustic wave energy transport (R. Richardson, Gold); work on chemical composition differences in stellar populations. To Princeton University (Spitzer, H. N. Russell), 1947; Project Matterhorn (start of bomb and fusion projects); relationship with Russell. Stellar evolution work in the 1950s; computer work (John Von Neumann, Richard Härm), mid-1950s; collaboration with Allan Sandage evolving a stellar model, 1952; computing towards red giants; observational cluster work, 1951; ages, metallicity, and the Big Bang; beginnings of "astrophysical" cosmology. Evolution theory after late 1950s; effect of computers on theoretical progress; relation of evolution theory to cosmology; general comments on his work in stellar evolution; interactions with Robert Dicke; views on cosmology, general relativity. Need for better solar convection work leads to use of balloons (James Van Allen); post-Sputnik funding; on cooperation with industry and engineers; Stratoscope II (Bob Danielson, Spitzer). Years advising the National Science Foundation, President's Science Advisory Committee, 1959-1976, and National Aeronautics and Space Administration (Von Neumann), to 1969; The International Astronomical Union, 1964-1970; American Asronomical Society, 1967-1973. Informal advisor to various observatories: Kitt Peak National Observatory, Mt. Wilson-Palomar Observatories, Carnegie Southern Observatory. Recent work on galactic structure. Reflects on importance of ethical standards; his feelings about religion and nature.
Life of his father, Karl Schwarzschild; father's scientific relationships in Göttingen (Felix Klein, David Hilbert); move to Potsdam, 1909; relations with Potsdam and Berlin scientists (Albert Einstein, Karl Sommerfeld); father's Jewish background concealed. M. Schwarzschild's youth in Göttingen and Berlin; early education, interest in astronomy and mathematics. Undergraduate at Göttingen Universität (Hans Kienle, Richard Courant, Neugebauer), 1930-1933; graduate work at Gottingen Observatory, 1933-1935; his reaction to Nazism. Introduction to astrophysics (Arthur Eddington), interest in stellar interiors and stellar evolution; contacts with other astronomers from Gottingen Observatory (Otto Heckmann, Kienle, Rupert Wildt); comments on general relativity; interest in pulsating stars; leaves Göttingen, 1936. Postdoctorate at Oslo (Svein Rosseland); Jan Oort, Ejnar Hertzsprung; mechanical analog computer for computations in astrophysics and celestial mechanics; comments on development of theory of stellar interiors, 1939-1950. To Harvard College Observatory (Harlow Shapley), 1938; C. Payne-Gaposchkin, Bart Bok; comparison of European and American observational style, social scene; Barbara Schwarzschild's difficulties as female astronomer; contacts with S. Chandrasekhar and other astronomers. Tour of the United States; visits Mt. Wilson Observatory (Wilhelm Baade, Rudolph Minkowski, Edwin Hubble, Milton Humason), 1940; Shapley's relationship with Mt. Wilson staff. Harvard (Fred Whipple), 1938-1941; Shapley as a leader; astronomy summer school at Harvard; work on Cepheid variables in M3 (Bok, Chandrasekhar); overall impact on Schwarzschild of Harvard period. Columbia University (Jan Schildt, I. I. Rabi), 1940-1942; difficulties there; origin and funding of Thomas Watson Astronomical Computing Center; discussion of cosmology in the late 1930s; contacts with physicists (Enrico Fermi). In U.S. Army, 1941-1945; enters as private, teaches math to recruits; refuses invitation to Los Alamos; transferred to Aberdeen Proving Ground, dissatisfaction there; to officers training school, does bombing analysis for Italian campaign. Work relating to stellar interiors and evolution, 1938-1946; nuclear energy source ideas (Hans Bethe, Fermi); Eddington, Gerard Kuiper, Chandrasekhar, G. Keller; German astronomers during World War II (Ludwig Biermann). Discussion of wife's career and her role in his career. Early ideas about red giants (Öpik, Herman Bondi, Fred Hoyle), 1946-1950. Work on acoustic wave energy transport (R. Richardson, Gold); work on chemical composition differences in stellar populations. To Princeton University (Spitzer, H. N. Russell), 1947; Project Matterhorn (start of bomb and fusion projects); relationship with Russell. Stellar evolution work in the 1950s; computer work (John Von Neumann, Richard Härm), mid-1950s; collaboration with Allan Sandage evolving a stellar model, 1952; computing towards red giants; observational cluster work, 1951; ages, metallicity, and the Big Bang; beginnings of "astrophysical" cosmology. Evolution theory after late 1950s; effect of computers on theoretical progress; relation of evolution theory to cosmology; general comments on his work in stellar evolution; interactions with Robert Dicke; views on cosmology, general relativity. Need for better solar convection work leads to use of balloons (James Van Allen); post-Sputnik funding; on cooperation with industry and engineers; Stratoscope II (Bob Danielson, Spitzer). Years advising the National Science Foundation, President's Science Advisory Committee, 1959-1976, and National Aeronautics and Space Administration (Von Neumann), to 1969; The International Astronomical Union, 1964-1970; American Asronomical Society, 1967-1973. Informal advisor to various observatories: Kitt Peak National Observatory, Mt. Wilson-Palomar Observatories, Carnegie Southern Observatory. Recent work on galactic structure. Reflects on importance of ethical standards; his feelings about religion and nature.
Life of his father, Karl Schwarzschild; father's scientific relationships in Göttingen (Felix Klein, David Hilbert); move to Potsdam, 1909; relations with Potsdam and Berlin scientists (Albert Einstein, Karl Sommerfeld); father's Jewish background concealed. M. Schwarzschild's youth in Göttingen and Berlin; early education, interest in astronomy and mathematics. Undergraduate at Göttingen Universität (Hans Kienle, Richard Courant, Neugebauer), 1930-1933; graduate work at Gottingen Observatory, 1933-1935; his reaction to Nazism. Introduction to astrophysics (Arthur Eddington), interest in stellar interiors and stellar evolution; contacts with other astronomers from Gottingen Observatory (Otto Heckmann, Kienle, Rupert Wildt); comments on general relativity; interest in pulsating stars; leaves Göttingen, 1936. Postdoctorate at Oslo (Svein Rosseland); Jan Oort, Ejnar Hertzsprung; mechanical analog computer for computations in astrophysics and celestial mechanics; comments on development of theory of stellar interiors, 1939-1950. To Harvard College Observatory (Harlow Shapley), 1938; C. Payne-Gaposchkin, Bart Bok; comparison of European and American observational style, social scene; Barbara Schwarzschild's difficulties as female astronomer; contacts with S. Chandrasekhar and other astronomers. Tour of the United States; visits Mt. Wilson Observatory (Wilhelm Baade, Rudolph Minkowski, Edwin Hubble, Milton Humason), 1940; Shapley's relationship with Mt. Wilson staff. Harvard (Fred Whipple), 1938-1941; Shapley as a leader; astronomy summer school at Harvard; work on Cepheid variables in M3 (Bok, Chandrasekhar); overall impact on Schwarzschild of Harvard period. Columbia University (Jan Schildt, I. I. Rabi), 1940-1942; difficulties there; origin and funding of Thomas Watson Astronomical Computing Center; discussion of cosmology in the late 1930s; contacts with physicists (Enrico Fermi). In U.S. Army, 1941-1945; enters as private, teaches math to recruits; refuses invitation to Los Alamos; transferred to Aberdeen Proving Ground, dissatisfaction there; to officers training school, does bombing analysis for Italian campaign. Work relating to stellar interiors and evolution, 1938-1946; nuclear energy source ideas (Hans Bethe, Fermi); Eddington, Gerard Kuiper, Chandrasekhar, G. Keller; German astronomers during World War II (Ludwig Biermann). Discussion of wife's career and her role in his career. Early ideas about red giants (Öpik, Herman Bondi, Fred Hoyle), 1946-1950. Work on acoustic wave energy transport (R. Richardson, Gold); work on chemical composition differences in stellar populations. To Princeton University (Spitzer, H. N. Russell), 1947; Project Matterhorn (start of bomb and fusion projects); relationship with Russell. Stellar evolution work in the 1950s; computer work (John Von Neumann, Richard Härm), mid-1950s; collaboration with Allan Sandage evolving a stellar model, 1952; computing towards red giants; observational cluster work, 1951; ages, metallicity, and the Big Bang; beginnings of "astrophysical" cosmology. Evolution theory after late 1950s; effect of computers on theoretical progress; relation of evolution theory to cosmology; general comments on his work in stellar evolution; interactions with Robert Dicke; views on cosmology, general relativity. Need for better solar convection work leads to use of balloons (James Van Allen); post-Sputnik funding; on cooperation with industry and engineers; Stratoscope II (Bob Danielson, Spitzer). Years advising the National Science Foundation, President's Science Advisory Committee, 1959-1976, and National Aeronautics and Space Administration (Von Neumann), to 1969; The International Astronomical Union, 1964-1970; American Asronomical Society, 1967-1973. Informal advisor to various observatories: Kitt Peak National Observatory, Mt. Wilson-Palomar Observatories, Carnegie Southern Observatory. Recent work on galactic structure. Reflects on importance of ethical standards; his feelings about religion and nature.