Search results
Displaying 1 - 10 of total 17 results:
In this interview Robert Cahn discusses his tenure and support of the Supernova Cosmology Project (SCP) as director (1991-1996) of the physics division at Lawrence Berkeley Laboratory (LBL). Reviews of the SCP. Saul Perlmutter as building a new field of research in distant supernovae. Astrophysics in Berkeley. Style of research in the physics division at LBL. On discoveries as gradual and the importance of statistics and systematics. Pentaquark discovery as an example of error. Physical Review's policy of what constitute 'evidence' (three Sigma) and what constitutes a 'discovery' (five Sigma). Historical example of the discovery of the neutron. Historical example of the discovery of the Psi particle. Two milestones in the discovery of positive Lambda: the first distant supernova and then, finding batches of supernovae. Use of the Hubble Space Telescope by High-z team and SCP. Controversy heated because of the possibility of winning the Nobel prize.
Gerson Goldhaber (1924- ). Early training at Hebrew University in Jerusalem (1942-1947). Graduate work at The University of Wisconsin. Research at Columbia University (1950-1953); memories of Rabi. Research at The University of California at Berkeley and at Lawrence Berkeley Laboratory (LBL). Took part in first experiment at Bevatron. Worked on K-mesons, the tau and theta mesons; measured the radius of interaction, and the difference between the behavior of like and unlike pion pairs; contributed to the design effort of SPEAR (Stanford Positron-Electron Asymmetric Ring) accelerator at SLAC; co-discovered, and named the Psi particle with George Trilling; Goldhaber found the naked-charm mesons; with colleagues, measured the lifetimes of a number of particles, including the tau lepton, the D mesons, and the B meson; at SLC (Stanford Linear Collider) did measurements of the mass and width of the Z particle, measuring how much of the Z decay went into neutral leptons. With colleague Robert Cahn, he wrote and published the textbook “The Experimental Foundations of Particle Physics.” Part of The Supernova Cosmology Project (SCP) since 1989. 2004, ‘Gersonfest’ held in his honor.
Gerson Goldhaber (1924- ). Early training at Hebrew University in Jerusalem (1942-1947). Graduate work at The University of Wisconsin. Research at Columbia University (1950-1953); memories of Rabi. Research at The University of California at Berkeley and at Lawrence Berkeley Laboratory (LBL). Took part in first experiment at Bevatron. Worked on K-mesons, the tau and theta mesons; measured the radius of interaction, and the difference between the behavior of like and unlike pion pairs; contributed to the design effort of SPEAR (Stanford Positron-Electron Asymmetric Ring) accelerator at SLAC; co-discovered, and named the Psi particle with George Trilling; Goldhaber found the naked-charm mesons; with colleagues, measured the lifetimes of a number of particles, including the tau lepton, the D mesons, and the B meson; at SLC (Stanford Linear Collider) did measurements of the mass and width of the Z particle, measuring how much of the Z decay went into neutral leptons. With colleague Robert Cahn, he wrote and published the textbook “The Experimental Foundations of Particle Physics.” Part of The Supernova Cosmology Project (SCP) since 1989. 2004, ‘Gersonfest’ held in his honor.
Gerson Goldhaber (1924- ). Early training at Hebrew University in Jerusalem (1942-1947). Graduate work at The University of Wisconsin. Research at Columbia University (1950-1953); memories of Rabi. Research at The University of California at Berkeley and at Lawrence Berkeley Laboratory (LBL). Took part in first experiment at Bevatron. Worked on K-mesons, the tau and theta mesons; measured the radius of interaction, and the difference between the behavior of like and unlike pion pairs; contributed to the design effort of SPEAR (Stanford Positron-Electron Asymmetric Ring) accelerator at SLAC; co-discovered, and named the Psi particle with George Trilling; Goldhaber found the naked-charm mesons; with colleagues, measured the lifetimes of a number of particles, including the tau lepton, the D mesons, and the B meson; at SLC (Stanford Linear Collider) did measurements of the mass and width of the Z particle, measuring how much of the Z decay went into neutral leptons. With colleague Robert Cahn, he wrote and published the textbook “The Experimental Foundations of Particle Physics.” Part of The Supernova Cosmology Project (SCP) since 1989. 2004, ‘Gersonfest’ held in his honor.
Gerson Goldhaber (1924- ). Early training at Hebrew University in Jerusalem (1942-1947). Graduate work at The University of Wisconsin. Research at Columbia University (1950-1953); memories of Rabi. Research at The University of California at Berkeley and at Lawrence Berkeley Laboratory (LBL). Took part in first experiment at Bevatron. Worked on K-mesons, the tau and theta mesons; measured the radius of interaction, and the difference between the behavior of like and unlike pion pairs; contributed to the design effort of SPEAR (Stanford Positron-Electron Asymmetric Ring) accelerator at SLAC; co-discovered, and named the Psi particle with George Trilling; Goldhaber found the naked-charm mesons; with colleagues, measured the lifetimes of a number of particles, including the tau lepton, the D mesons, and the B meson; at SLC (Stanford Linear Collider) did measurements of the mass and width of the Z particle, measuring how much of the Z decay went into neutral leptons. With colleague Robert Cahn, he wrote and published the textbook “The Experimental Foundations of Particle Physics.” Part of The Supernova Cosmology Project (SCP) since 1989. 2004, ‘Gersonfest’ held in his honor.
Gerson Goldhaber (1924- ). Early training at Hebrew University in Jerusalem (1942-1947). Graduate work at The University of Wisconsin. Research at Columbia University (1950-1953); memories of Rabi. Research at The University of California at Berkeley and at Lawrence Berkeley Laboratory (LBL). Took part in first experiment at Bevatron. Worked on K-mesons, the tau and theta mesons; measured the radius of interaction, and the difference between the behavior of like and unlike pion pairs; contributed to the design effort of SPEAR (Stanford Positron-Electron Asymmetric Ring) accelerator at SLAC; co-discovered, and named the Psi particle with George Trilling; Goldhaber found the naked-charm mesons; with colleagues, measured the lifetimes of a number of particles, including the tau lepton, the D mesons, and the B meson; at SLC (Stanford Linear Collider) did measurements of the mass and width of the Z particle, measuring how much of the Z decay went into neutral leptons. With colleague Robert Cahn, he wrote and published the textbook “The Experimental Foundations of Particle Physics.” Part of The Supernova Cosmology Project (SCP) since 1989. 2004, ‘Gersonfest’ held in his honor.
Gerson Goldhaber (1924- ). Early training at Hebrew University in Jerusalem (1942-1947). Graduate work at The University of Wisconsin. Research at Columbia University (1950-1953); memories of Rabi. Research at The University of California at Berkeley and at Lawrence Berkeley Laboratory (LBL). Took part in first experiment at Bevatron. Worked on K-mesons, the tau and theta mesons; measured the radius of interaction, and the difference between the behavior of like and unlike pion pairs; contributed to the design effort of SPEAR (Stanford Positron-Electron Asymmetric Ring) accelerator at SLAC; co-discovered, and named the Psi particle with George Trilling; Goldhaber found the naked-charm mesons; with colleagues, measured the lifetimes of a number of particles, including the tau lepton, the D mesons, and the B meson; at SLC (Stanford Linear Collider) did measurements of the mass and width of the Z particle, measuring how much of the Z decay went into neutral leptons. With colleague Robert Cahn, he wrote and published the textbook “The Experimental Foundations of Particle Physics.” Part of The Supernova Cosmology Project (SCP) since 1989. 2004, ‘Gersonfest’ held in his honor.
In this interview, Chuck Leith discusses his early life and the development of his career as a physicist, a mathematician, and a climate modeler. Topics discussed include: University of California, Berkeley; Ernest Lawrence; Lawrence Berkeley National Laboratory; Manhattan Project; Edward Teller; Emilio Segrè; Herb York; John Von Neumann; computer atmospheric modeling; Bob Richtmyer; Joe Smagorinsky; J. Robert Oppenheimer; UNIVAC; Institute for Advanced Study; simulations of thermonuclear explosions; Joe Knox; Jule Charney; George Cressman; numerical weather prediction; weather modification; Akio Arakawa; Lewis Fry Richardson; Warren Washington; George Michael; Mike MacCracken; University of California, Davis; Dave Fultz; Global Atmospheric Research Program (GARP); National Center for Atmospheric Research (NCAR); Walter Orr Roberts; Akira Kasahara; Control Data Corporation computers; Cray computers; Seymour Cray; National Academy of Science; ozone layer depletion; Francis Benedict; Steve Orszag; Dick Lindzen; climate change; Alexander Obukhov; Andrei Kolmogorov; Rich Anthes.
Theoretical physicist. Undergraduate work at Princeton University, graduate work at Stanford University in the early 1980s, where he studied core collapse, Type II supernovae, using them as distance indicators using the Expanding Atmosphere Method. From the mid 1980s to the mid 1990s, he criticized those who would use supernovae as distance indicators. He is the author of the cosmology textbook, First Principles of Cosmology, published in 1997. Was a senior researcher at University of Massachusetts at Amherst when discovery came out in 1998. The papers so impressed him especially the theoretical thoroughness of the SCP paper of 1999, that he was convinced of the accelerating universe, and even asked to join the SCP as a result. Now, collaborates with the SCP at LBL as theoretician.
Family background and childhood in Germany, 1919-1934; emigration to U.S. and undergraduate study and life at Princeton University, 1934-1938. Graduate work at California Institute of Technology, 1938-1942; work with Jesse W. M. DuMond, course load, and importance of his thesis. War work at California Institute of Technology; problems because of enemy alien status; work on firing error indicators. War work at Los Alamos Scientific Laboratory: atomic bomb explosion, feelings concerning implications. Research at University of California at Berkeley, 1945-1951: construction of linear accelerator under Luis Alvarez (training, funding, working relationships, work schedules, relationship with other research groups), work on synchrotron, bevatron, Material Testing Accelerator project, neutal meson work and pion work; campus life, teaching responsibilities, textbook writing with Melba Phillips; security measures at Berkeley, 1945-1951: Berkeley's loyalty oath leads to move to Stanford University, 1951. The "Screw Driver" report (with Robert Hofstadter) for the Atomic Energy Commission. Korean War-related work (Felix Bloch, Edward L. Ginzton, Robert Kyhl); rigid politics of physics department; Washington involvement; consultant to the Air Force Science Advisory Board; Hans Bethe, Edward Teller; Bethe's Conference of Experts, 1958; Geneva negotiations, 1959; George Kistiakowski and Isidor I. Rabi; appointment to President's Science Advisory Committee, 1960; Dwight D. Eisenhower. Government support of science; Stanford Linear Accelerator (SLAC); Joint Committee on Atomic Energy hearings (Ginzton, Varian Associates); avoiding the "Berkeley image" at SLAC. Also prominently mentioned are: Sue Gray Norton Alsalan, Carl David Anderson, Raymond Thayer Birge, Hugh Bradner, Henry Eyring, Don Gow, Alex E. S. Green, William Webster Hansen, Joel Henry Hildebrand, Giulo Lattes, Ernest Orlando Lawrence, Edwin Mattison McMillan, John Francis Neylan, Hans Arnold Panofsky, Ryokishi Sagane, Robert Gordon Sproul, Raymond L. Steinberger, Charles Hard Townes, Watters, Gian Carlo Wick, John Robert Woodyard, Dean E. Wooldridge, Fritz Zwicky; Federation of American Scientists, and Lawrence Radiation.