Displaying 1 - 10 of total **11** results:

Interviewed by

Charles Weiner

Interview date

Location

Altadena, California

Abstract

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.

Interviewed by

Charles Weiner

Interview date

Location

Altadena, California

Abstract

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.

Interviewed by

Charles Weiner

Interview date

Location

Altadena, California

Abstract

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.

Interviewed by

Charles Weiner

Interview date

Location

Altadena, California

Abstract

Interviewed by

David Zierler

Interview date

Location

Video conference

Abstract

Interview with Gerard 't Hooft, University Professor of Physics (Emeritus) at Utrecht University in the Netherlands. 't Hooft considers the possibility that the g-2 muon anomaly experiment at Fermilab is suggestive of new physics, and he reflects broadly on the current shortcomings in our understanding of quantum mechanics and general relativity. 't Hooft recounts his childhood in postwar Holland and the influence of his great uncle, the Nobel Prize winner Frits Zernike and his uncle, the theoretical physicist Nico van Kampen. He describes his undergraduate education at Utrecht University where he got to know Martinus Veltman, with whom he would pursue a graduate degree and ultimately share the Nobel Prize. 't Hooft explains the origins of what would become the Standard Model and the significance of Yang-Mills fields and Ken Wilson’s theory of renormalization. He describes Veltman’s pioneering use of computers to calculate algebraic manipulations and why questions of scaling were able to be raised for the first time. 't Hooft discusses his postdoctoral appointment at CERN, his ideas about grouping Feynman diagrams together, and how he became involved in quantum gravity research and Bose condensation. He explains the value in studying instantons for broader questions in QCD, the significance of Hawking’s work on the black hole information paradox, the holographic principle, and why he has diverged with string theorists. 't Hooft describes being present at the start of supersymmetry, and the growing “buzz” that culminated in winning the Nobel Prize. He describes his overall interest in the past twenty years in thinking more deeply about quantum mechanics and he places the foundational disagreement between Einstein and Bohr in historical context. At the end of the interview, 't Hooft surveys the limitations that prevent us from understanding how to merge quantum mechanics and general relativity and why this will require an understanding of how to relate the set of all integer numbers to phenomena of the universe.

Interviewed by

David Zierler

Interview date

Location

Video conference

Abstract

Interview with Stephen Fulling, Professor of Mathematics and of Physics and Astronomy at Texas A&M University. Fulling explains the history of why his primary academic department is math and how the field of general relativity became more directly relevant to observational cosmology in the 1960s and 1970s. He recounts his middle-class upbringing in Indiana and his dual interests in math and physics which he developed during his undergraduate years at Harvard. Fulling discusses his graduate work at Princeton, where Arthur Wightman supervised his research. He explains the contemporary controversy over the Casimir effect and his interest in the Minkowski vacuum, and he discusses his postdoctoral appointment at UW-Milwaukee. Fulling describes his work on Riemannian spacetime and Robertson-Walker spacetime, and he explains the opportunity that led him to the University of London, where black holes was a focus of research. He describes meeting Paul Davies and Chris Isham and how the field started to take black holes seriously as observable entities in the 1980s. Fulling explains his longstanding interest in asymptotic expansion and he surveys more recent advances in the Casimir effect. He reflects on the Unruh effect as it approaches its 50th anniversary, and he addresses the disagreement on whether or not it has been observed and whether the Unruh effect implies Unruh radiation. At the end of the interview, Fulling discusses his current interests in the soft wall problem and acceleration radiation, and he explains his ongoing interest in seeing advances in research on Casimir energy.

Interviewed by

David Zierler

Interview dates

April 13, April 15 and April 22, 2021

Location

Video conference

Abstract

Interview with Pierre Ramond, Distinguished Professor of Physics at the University of Florida. Ramond recounts childhood in Paris, he describes his family’s experiences during World War II, and he explains that opportunities that led to his education in electrical engineering at the New Jersey Institute of Technology. He discusses his graduate degree in physics at Syracuse University to focus on general relativity and his first exposure to the earliest iterations of string theory. Ramond describes his work at Fermilab on Veneziano modelling, his postdoctoral research at Yale, and his subsequent work at Los Alamos. He describes Gell-Mann’s interest in grand unified theories and the influence of Ken Wilson. Ramond explains the excitement regarding the muon anomaly experiment at Fermilab, and he narrates his decision to join the faculty at the University of Florida. He explains how the department’s stature has risen over the past forty years, and he reflects on his involvement with the superstring revolution in 1984. Ramond describes the difference between effective and fundamental theories in particle physics and he conveys the productive intellectual ferment at the annual Aspen conferences. He describes his service work on the faculty senate and he describes his leadership position at the APS during the discovery of the Higgs. Ramond explains why he thinks supersymmetry would have been detected at a completed SSC and he reflects on receiving the Dirac medal in 2020. At the end of the interview, he discusses Einstein’s misgivings on quantum mechanics, he imagines how string theory might be testable, and he explains why he remains interested in CP violation.

Interviewed by

Charles Weiner

Interview date

Location

Altadena, California

Abstract

Interviewed by

David Zierler

Interview date

Location

Video conference

Abstract

Interview with Mark Trodden, Fay R. and Eugene L. Langberg Professor of Physics, and Co-Director of the Center for Particle Cosmology at the University of Pennsylvania. Trodden describes the overlap between astronomy, astrophysics, and cosmology, and he recounts his working-class upbringing in England. He discusses his undergraduate education at Cambridge, where he focused on mathematics, and he explains his decision to switch to physics for graduate school at Brown, where he worked under the direction of Robert Brandenberger. Trodden describes the impact of the COBE program during this time, and he discusses his work on the microphysics of cosmic strings and topological defects and their effect on baryon asymmetry. He explains his decision to return to Cambridge for his postdoctoral research with Anne Davis and his subsequent postdoctoral appointment at MIT to work with Alan Guth. Trodden discusses his next postdoctoral position at Case Western, which he describes as a tremendously productive period, and he discusses the opportunities that led to his first faculty position at Syracuse. He notes the excellent graduate students he worked with at Syracuse, and he explains what is known and not known with regard to the discovery of the accelerating universe. Trodden describes why the theory of cosmic inflation remains outside the bounds of experimental verification, and he explains the decisions that led to his decision to join the faculty at Penn and his subsequent appointment as chair of the department. He discusses the work that Penn Physics, and STEM in general, needs to do to make diversity and inclusivity more of a top-line agenda, and he describes much of the exciting work his current and former graduate students are involved in. At the end of the interview, Trodden looks to the future and offers ideas on how physicists may ultimately come to understand dark energy and dark matter.

Interviewed by

Eline V. A. van den Heuvel

Interview date

Interview dates

January 14, February 8, and May 11, 2020

Location

Kensington Park Senior Living, Kensington, Maryland, USA

Abstract

Physics Graduate student Eline V. A. van den Heuvel (University of Amsterdam) interviews Professor Emeritus of Physics and Senior Research Scientist at the University of Maryland Charles W. Misner. After obtaining his BA at the University of Notre Dame in 1952, Prof. Misner continued his education at Princeton University, where he completed his PhD in Physics under supervision of Prof. John. A. Wheeler (1911-2008) in 1957. In the spring semester of 1956, Prof. Wheeler fulfilled the Lorentz professorship at Leiden University, the Netherlands, accompanied by his student Misner. Prof. Misner discusses this trip, focusing on his personal experience and his work on the Already Unified Field. He also discusses Wheeler’s relativity work and possible motivations for Wheeler to go to Leiden. The remainder of the interview deals with the many-worlds interpretation of Dr. Hugh Everett, a friend of Misner and former a PhD student of Wheeler, and Misner expresses his disappointment in how the physics community has treated Everett.