Search results
Displaying 1 - 10 of total 16 results:
Family background; early interest in mathematics; physics at University of Manchester; Ernest Rutherford's influence; early research under Rutherford at Manchester; examination by Joseph J. Thomson for degree; recollections of associates at Manchester, including Niels Bohr; scholarship to Universität Berlin and work there with Hans Geiger; internment during World War I; scientific work at internment camp; return to Manchester; move with Rutherford to University of Cambridge; appointment as Assistant Director of Research at Cavendish Laboratory (ca. 1923); work with Rutherford on artificial disintegration; Rutherford's idea of the neutron; early experimental search for neutron; duties and experiences at the Cavendish Laboratory from 1919 to 1936; Rutherford's personality; Solvay conference of 1933; reasons for leaving Cambridge for University of Liverpool; initial plans, personnel and activities at Liverpool; cyclotron; award of Nobel Prize; encounter with Joliots, also in Stockholm for Prize in chemistry; influx of refugee theoreticians; work on the meson; changes effected by large machines; recollections of announcement of fission; World War II work; involvement with A-bomb project, Los Alamos Scientific Laboratory and General Leslie Groves; postwar considerations regarding international control of atomic energy; effect of Rutherford's death on Cavendish; return to Cambridge as Master of Gonville and Caius College; circumstances of resignation as Master; appraisal of personal satisfactions. Also prominently mentioned are: H. K. Anderson, John Anderson, Homi Bhabha, Patrick Maynard Stuart Blackett, Niels Henrik David Bohr, Paul Adrien Maurice Dirac, Albert Einstein, Charles D. Ellis, Walter M. Elsasser, Ralph Howard Fowler, Maurice Goldhaber, Otto Hahn, Walter Heitler, J. R. Holt, Ernest Orlando Lawrence, Douglas Lea, Lise Meitner, Stefan Meyer, Henry N. Moseley, Walther Nernst, Giuseppe Occhialini, Mark Oliphant, Maurice H. L. Pryce, Stanley Rolands, Heinrich Rubens, Joseph John Thomson, Merle Antony Tuve, Walke, H. C. Webster, Charles Thomson Rees Wilson; Department of Scientific and Industrial Research of Great Britain, Manchester Literary and Philosophical Society, Ministry of Aircraft Uranium Development Committee (Great Britain), Physikalische-Technische Reichsanstalt, Royal Society (Great Britain), University of Birmingham, University of Cambridge Cavendish Physical Society, and University of Liverpool.
Family background; early interest in mathematics; physics at University of Manchester; Ernest Rutherford's influence; early research under Rutherford at Manchester; examination by Joseph J. Thomson for degree; recollections of associates at Manchester, including Niels Bohr; scholarship to Universität Berlin and work there with Hans Geiger; internment during World War I; scientific work at internment camp; return to Manchester; move with Rutherford to University of Cambridge; appointment as Assistant Director of Research at Cavendish Laboratory (ca. 1923); work with Rutherford on artificial disintegration; Rutherford's idea of the neutron; early experimental search for neutron; duties and experiences at the Cavendish Laboratory from 1919 to 1936; Rutherford's personality; Solvay conference of 1933; reasons for leaving Cambridge for University of Liverpool; initial plans, personnel and activities at Liverpool; cyclotron; award of Nobel Prize; encounter with Joliots, also in Stockholm for Prize in chemistry; influx of refugee theoreticians; work on the meson; changes effected by large machines; recollections of announcement of fission; World War II work; involvement with A-bomb project, Los Alamos Scientific Laboratory and General Leslie Groves; postwar considerations regarding international control of atomic energy; effect of Rutherford's death on Cavendish; return to Cambridge as Master of Gonville and Caius College; circumstances of resignation as Master; appraisal of personal satisfactions. Also prominently mentioned are: H. K. Anderson, John Anderson, Homi Bhabha, Patrick Maynard Stuart Blackett, Niels Henrik David Bohr, Paul Adrien Maurice Dirac, Albert Einstein, Charles D. Ellis, Walter M. Elsasser, Ralph Howard Fowler, Maurice Goldhaber, Otto Hahn, Walter Heitler, J. R. Holt, Ernest Orlando Lawrence, Douglas Lea, Lise Meitner, Stefan Meyer, Henry N. Moseley, Walther Nernst, Giuseppe Occhialini, Mark Oliphant, Maurice H. L. Pryce, Stanley Rolands, Heinrich Rubens, Joseph John Thomson, Merle Antony Tuve, Walke, H. C. Webster, Charles Thomson Rees Wilson; Department of Scientific and Industrial Research of Great Britain, Manchester Literary and Philosophical Society, Ministry of Aircraft Uranium Development Committee (Great Britain), Physikalische-Technische Reichsanstalt, Royal Society (Great Britain), University of Birmingham, University of Cambridge Cavendish Physical Society, and University of Liverpool.
Early interest in physics. Education and career prior to joining JASON: two years in the Royal Air Force; switch from mathematics to physics after the war; enrollment at Cornell University in 1947; difference between American and British physics. Exposure to science policy (Federation of Atomic Scientists, Philip Morrison); U.S. citizen 1957. Motivation for joining JASON; JASON work vs. work in Arms Control and Disarmament Agency; work on active optics in JASON; technical tasks vs. policy advice; Oregon Trail; availability of JASON bibliography; public profile of JASON members; divisions within JASON; other science policy activities; reasons for leaving JASON. Also prominently mentioned are: Abraham S. Besicovich; Columbia University, General Atomic Company, Nike-X (Missile), United States Defense Advanced Research Projects Agency, United States National Aeronautics and Space Administration, and University of Birmingham.
Reminiscences of studies at University of Cambridge and of the 1851 Exhibition Science Scholarship from 1927. Recollections of Ernest Rutherford, work with him on measurement of the energies of the product particles after Cockcroft-Walton, and on transformation effects on deuterium brought by Gilbert N. Lewis from University of California at Berkeley. Working conditions at Cavendish Laboratory; criticism of Rutherford by Advisory Council of the DSIR (Department of Scientific and Industrial research); change in focus at Cavendish after Rutherford's death. Trip to Berkeley in 1938 to study design of 60-inch cyclotron as model for Birmingham cyclotron. Also prominently mentioned are: Francis William Aston, James Chadwick, John Cockcroft, Kerr Grant; Nuffield (Automobile manufacturer), University of Adelaide, University of Birmingham, and University of California at Berkeley.
This interview focuses upon Robinson's role in helping to found and then run the High Voltage Engineering Co., Burlington, Mass. It covers boyhood in England, including the early influences that may have been responsible for his success as a manager; education at Kings College and MIT; pre-World War II engineering work; wartime radar work and role as British liaison to the MIT Radiation Lab; postwar years as professor at the University of Birmingham; decision to come to the U.S., where he joined John Trump and Robert J. Van de Graaff in starting the High Voltage Engineering Co. Robinson reflects upon the problems he faced as president of a struggling young science company, the characters of Trump and Van de Graaff, how the three of them worked together, and how he kept the company together during a crisis over which direction it should take in developing accelerators. He relates how the company was hurt by cutbacks in university research funds, and why, in 1970, he relinquished the presidency to become chairman of the board. He speculates on why he is one of the few technical men to have started a company in the booming postwar period that remains at the helm 30 years later.
Early interest in radio; Carnegie Institute of Technology's physics department, 1932-1936; first department research program; summer research experience, 1932-1936; graduate work at University at Berkeley under J. Robert Oppenheimer, 1936-1940; sources of fellowship support; Berkeley journal club; interactions of theorists and experimentalists at Berkeley, and with Stanford University and Caltech, late 1930s; reactions to fission; nuclear physics at University of Illinois, 1941-1942; sources of funds for accelerators to 1941; recruitment to University of Chicago Metallurgical Laboratory, 1942; Los Alamos Scientific Laboratory, 1944-1946, personnel, research, plans and expectations for peacetime work; scale and financing of physics at Cornell University in immediate postwar period; rise of particle physics after 1949; differences between pre- and postwar physics, job expectations, style of research; evolution of accelerating and detecting methods, 1920s to 1950s; connections between physics and astronomy. Also prominently mentioned are: Paul Aebersold, Luis Walter Alvarez, Hans Albrecht Bethe, Raymond Thayer Birge, Niels Henrik David Bohr, Kevin Burns, Robert F. Christy, Immanuel Estermann, Enrico Fermi, Richard Phillips Feynman, William Alfred Fowler, Otto Robert Frisch, Maurice Goldhaber, Harry Hower, Fred Hoyle, Donald W. Kerst, Charles Christian Lauritsen, Ernest Orlando Lawrence, Philip A. Morrison, J. Robert Oppenheimer, Isidor Isaac Rabi, Ernest Rutherford, Emilio Gino Segrè, Otto Stern, Leo Szilard, Robert Rathbun Wilson; Allegheny Observatory, California Institute of Technology, Cavendish Laboratory, Columbia University, Cornell University, International Conference on High Energy Physics, Los Alamos National Laboratory, Massachusetts Institute of Technology, Princeton University, United States Army, United States Navy, United States Office of Naval Research, University of Birmingham, University of California at San Diego, University of Chicago Metallurgical Laboratory, and University of Illinois at Urbana-Champaign Nuclear Engineering Program.
Family background and childhood in Germany, 1919-1934; emigration to U.S. and undergraduate study and life at Princeton University, 1934-1938. Graduate work at California Institute of Technology, 1938-1942; work with Jesse W. M. DuMond, course load, and importance of his thesis. War work at California Institute of Technology; problems because of enemy alien status; work on firing error indicators. War work at Los Alamos Scientific Laboratory: atomic bomb explosion, feelings concerning implications. Research at University of California at Berkeley, 1945-1951: construction of linear accelerator under Luis Alvarez (training, funding, working relationships, work schedules, relationship with other research groups), work on synchrotron, bevatron, Material Testing Accelerator project, neutal meson work and pion work; campus life, teaching responsibilities, textbook writing with Melba Phillips; security measures at Berkeley, 1945-1951: Berkeley's loyalty oath leads to move to Stanford University, 1951. The "Screw Driver" report (with Robert Hofstadter) for the Atomic Energy Commission. Korean War-related work (Felix Bloch, Edward L. Ginzton, Robert Kyhl); rigid politics of physics department; Washington involvement; consultant to the Air Force Science Advisory Board; Hans Bethe, Edward Teller; Bethe's Conference of Experts, 1958; Geneva negotiations, 1959; George Kistiakowski and Isidor I. Rabi; appointment to President's Science Advisory Committee, 1960; Dwight D. Eisenhower. Government support of science; Stanford Linear Accelerator (SLAC); Joint Committee on Atomic Energy hearings (Ginzton, Varian Associates); avoiding the "Berkeley image" at SLAC. Also prominently mentioned are: Sue Gray Norton Alsalan, Carl David Anderson, Raymond Thayer Birge, Hugh Bradner, Henry Eyring, Don Gow, Alex E. S. Green, William Webster Hansen, Joel Henry Hildebrand, Giulo Lattes, Ernest Orlando Lawrence, Edwin Mattison McMillan, John Francis Neylan, Hans Arnold Panofsky, Ryokishi Sagane, Robert Gordon Sproul, Raymond L. Steinberger, Charles Hard Townes, Watters, Gian Carlo Wick, John Robert Woodyard, Dean E. Wooldridge, Fritz Zwicky; Federation of American Scientists, and Lawrence Radiation.
Family background and childhood in Germany, 1919-1934; emigration to U.S. and undergraduate study and life at Princeton University, 1934-1938. Graduate work at California Institute of Technology, 1938-1942; work with Jesse W. M. DuMond, course load, and importance of his thesis. War work at California Institute of Technology; problems because of enemy alien status; work on firing error indicators. War work at Los Alamos Scientific Laboratory: atomic bomb explosion, feelings concerning implications. Research at University of California at Berkeley, 1945-1951: construction of linear accelerator under Luis Alvarez (training, funding, working relationships, work schedules, relationship with other research groups), work on synchrotron, bevatron, Material Testing Accelerator project, neutal meson work and pion work; campus life, teaching responsibilities, textbook writing with Melba Phillips; security measures at Berkeley, 1945-1951: Berkeley's loyalty oath leads to move to Stanford University, 1951. The "Screw Driver" report (with Robert Hofstadter) for the Atomic Energy Commission. Korean War-related work (Felix Bloch, Edward L. Ginzton, Robert Kyhl); rigid politics of physics department; Washington involvement; consultant to the Air Force Science Advisory Board; Hans Bethe, Edward Teller; Bethe's Conference of Experts, 1958; Geneva negotiations, 1959; George Kistiakowski and Isidor I. Rabi; appointment to President's Science Advisory Committee, 1960; Dwight D. Eisenhower. Government support of science; Stanford Linear Accelerator (SLAC); Joint Committee on Atomic Energy hearings (Ginzton, Varian Associates); avoiding the "Berkeley image" at SLAC. Also prominently mentioned are: Sue Gray Norton Alsalan, Carl David Anderson, Raymond Thayer Birge, Hugh Bradner, Henry Eyring, Don Gow, Alex E. S. Green, William Webster Hansen, Joel Henry Hildebrand, Giulo Lattes, Ernest Orlando Lawrence, Edwin Mattison McMillan, John Francis Neylan, Hans Arnold Panofsky, Ryokishi Sagane, Robert Gordon Sproul, Raymond L. Steinberger, Charles Hard Townes, Watters, Gian Carlo Wick, John Robert Woodyard, Dean E. Wooldridge, Fritz Zwicky; Federation of American Scientists, and Lawrence Radiation.
<p>Then, the project finally got authorized in 1961 — but again after a rather amusing set of coincidences. At that time the Stanford project was sort of known as the Republican project because Eisenhower had proposed it to a Democratic Congress. At that time there was a project that the Democrats wanted in Congress which the Republican administration did not want. This was for the Hanford Reactor to generate power into the electrical net, because it was considered to be socialized electricity by the Republicans, to have power generated by a production reactor. There was also good economic and technical reasons against such a project. It’s a very inefficient reactor, for power generation because of the low temperature at which the Hanford reactor operates. Anyway, the Democrats wanted it and the Republicans didn't.</p>
<p>On the other hand, the Stanford linear accelerator was considered to be a Republican proposal, opposed by the Democrats. So after a while the Republicans and Democrats in the Joint Committee essentially said, "If you approve Hanford, then we approve Stanford." So it ended up with both of them getting approved, and it was this entirely political infighting in the Congress which resulted in that last hurdle being passed. However in 1960, we already had very good confidence that it would go, because the three million dollars was fundamentally a signal to us that Congress really meant it but that they wanted to slap Mr. Eisenhower’s wrist for non-consultation.</p>
Early years in Vienna; emigration to Sydney, Australia as refugee; training there in theoretical physics, to 1946. Quantum field theory and social interactions under Rudolf Peierls at University of Birmingham, to 1949, and Hans Bethe at Cornell University; relations among U.S. field theorists; nuclear theory applied to experiments. Discovery of triple-alpha process at Caltech, 1951; move into astrophysics and social relations in Cornell physics and astronomy departments. Work on increasing variety of astrophysics problems, some related to cosmology, and on ionosphere; Arecibo observatory. Sources of funds. Consulting on anti-ballistic missiles etc. in the 1960s; JASON, NASA and other government relations. Comments throughout on politics; discussions of work style, "pragmatic" approach to theory. Also prominently mentioned are: Wilhelm Heinrich Walter Baade, Victor Bailey, David Bohm, Henry Booker, Sidney Brenner, Dale Corson, Francis Crick, Frank Drake, Freeman Dyson, Richard Phillips Feynman, William Alfred Fowler, George Gamow, Murray Gell-Mann, Thomas Gold, Bill Gordon, Fred Hoyle, Charles Christian Lauritsen, Thomas Lauritsen, Francis Eugene Low, R. E. Makinson, Robert McNamara, Philip A. Morrison, Mark Oliphant, Eugenia Peierls, David Pines, Martin Ryle, Miriam Salpeter, Allan Sandage, Martin Schwarzschild, Julian R. Schwinger, R. W. Shaw, Tamann, Robert Rathbun Wilson, R. W. Wooley; California Institute of Technology, Conference on Relativistic Astrophysics, Conference on Stellar Populations (1957 : Rome, Italy), Institute for Advanced Study (Princeton), National Science Foundation, Philips Elektronik Industrie GmbH, Sydney Boys High School, Tel-Aviv University, Texas Relativistic Astrophysics Conference, United States Defense Advanced Research Projects Agency, United States Department of Defense, United States President's Science Advisory Committee, University of Sydney, and Vatican Symposia.