# Search results

Displaying 1 - 7 of total **7** results:

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations.

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations.

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations.

Gamow's involvement with nuclear physics. His later work in astrophysics and his interest in biology. Personal anecdotes about Gamow's childhood in Odessa, student life with Lev Landau and Dmitriy Ivanenko at the University of Leningrad, his fellowship at Göttingen, work in Copenhagen with Niels Bohr, and at University of Cambridge with Ernest Rutherford. Emigration to America in 1934, subsequent work in the United States. Work on penetration barriers, saturation, the beta decay rule, and the nuclear droplet model.

Early education, Real-gymnasium; Universität Berlin, 1930; early interest in physics; courses, books studied, method of noting original ideas; University of Cambridge, 1933; first formal paper on nuclear physics; reaction in Berlin to discovery of neutron, colloquium of Lise Meitner; beta decay and the neutrino hypothesis; working habits at Cavendish Laboratory; collaboration with James Chadwick; photodisintegration of the deuteron; work with slow neutrons; circumstances of move to U.S., 1938; consequences of death of Ernest Rutherford on research at Cavendish Laboratory; use of proportiona