Search results
Displaying 1 - 10 of total 111 results:
Dr. Orson Anderson describes his family background; his military service, which influenced his entire scientific career; his educational background; his work at Bell Labs, Columbia University, and the Institute of Geophysics and Planetary Physics at the University of California Los Angeles; he also discusses his current family life and his plans for retirement.
Dr. Orson Anderson describes his family background; his military service, which influenced his entire scientific career; his educational background; his work at Bell Labs, Columbia University, and the Institute of Geophysics and Planetary Physics at the University of California Los Angeles; he also discusses his current family life and his plans for retirement.
Topics discussed include: family background, education at Harvard, Japan, interactions with Japanese physicists, Bell Labs, solid state physics, Mott phenomenon, Green's function, and Helium-3.
Discusses his childhood and education in Illinois, undergrad and graduate work at Harvard; writing his thesis with Van Vleck; working at Bell Laboratoreis and the scientists there including William Shockley; the rise of interest in solid state physics in the early 1950s; research in superconductivity; the creation of theory groups at Bell Labs in 1956 and the relationship between theorists and experimenters in the lab; decisions on research topics at Bell; his year in Japan with Kubo; security restrictions at Bell and military research; collaborations with John Galt; experiments leading to localization of electrons in 1956-57; development of superconductivity theory; his visit to the Soviet Union in 1958; collaboration with Morel in 1961 on superconductivity; and research philosophy and approach to problems. Others prominently mentioned are: N. Bogolyubov; George Feher, V. Ginzburg, Gorkov, Charles Kittel, Lev Landau, David Pines, Harry Suhl, Gregory Wannier.
Discusses his childhood and education in Illinois, undergrad and graduate work at Harvard; writing his thesis with Van Vleck; working at Bell Laboratoreis and the scientists there including William Shockley; the rise of interest in solid state physics in the early 1950s; research in superconductivity; the creation of theory groups at Bell Labs in 1956 and the relationship between theorists and experimenters in the lab; decisions on research topics at Bell; his year in Japan with Kubo; security restrictions at Bell and military research; collaborations with John Galt; experiments leading to localization of electrons in 1956-57; development of superconductivity theory; his visit to the Soviet Union in 1958; collaboration with Morel in 1961 on superconductivity; and research philosophy and approach to problems. Others prominently mentioned are: N. Bogolyubov; George Feher, V. Ginzburg, Gorkov, Charles Kittel, Lev Landau, David Pines, Harry Suhl, Gregory Wannier.
Discusses his childhood and education in Illinois, undergrad and graduate work at Harvard; writing his thesis with Van Vleck; working at Bell Laboratoreis and the scientists there including William Shockley; the rise of interest in solid state physics in the early 1950s; research in superconductivity; the creation of theory groups at Bell Labs in 1956 and the relationship between theorists and experimenters in the lab; decisions on research topics at Bell; his year in Japan with Kubo; security restrictions at Bell and military research; collaborations with John Galt; experiments leading to localization of electrons in 1956-57; development of superconductivity theory; his visit to the Soviet Union in 1958; collaboration with Morel in 1961 on superconductivity; and research philosophy and approach to problems. Others prominently mentioned are: N. Bogolyubov; George Feher, V. Ginzburg, Gorkov, Charles Kittel, Lev Landau, David Pines, Harry Suhl, Gregory Wannier.
Discusses his childhood and education in Illinois, undergrad and graduate work at Harvard; writing his thesis with Van Vleck; working at Bell Laboratoreis and the scientists there including William Shockley; the rise of interest in solid state physics in the early 1950s; research in superconductivity; the creation of theory groups at Bell Labs in 1956 and the relationship between theorists and experimenters in the lab; decisions on research topics at Bell; his year in Japan with Kubo; security restrictions at Bell and military research; collaborations with John Galt; experiments leading to localization of electrons in 1956-57; development of superconductivity theory; his visit to the Soviet Union in 1958; collaboration with Morel in 1961 on superconductivity; and research philosophy and approach to problems. Others prominently mentioned are: N. Bogolyubov; George Feher, V. Ginzburg, Gorkov, Charles Kittel, Lev Landau, David Pines, Harry Suhl, Gregory Wannier.
Interview focuses briefly on personal details of Philip Anderson's life and almost exclusively on technical aspects of Anderson's research. After discussing his undergraduate and graduate education at Harvard including his research on spectral lines, he begins the technical aspects of the interview by reviewing his interest in anti-ferromagnetism and his time in Japan. Included in this are his thoughts on the organization of the Japanese scientific community. The second half of the interview deals entirely with his interest in superconductivity and localized moments. Within this general topic there is some treatment of his thoughts on the time that he spent in Cambridge, MA.
Anderson discusses the theory of superfluid Helium-3; recalls germination of the idea and eventual publication of "More is Different"; reviews work on topological defects; discusses motivation for resonation valence bond work with Fazekas; talks about interaction with Lee and Rice on charge density waves; recalls foray into astrophysics with Pines and Alpar and theory of pulsars glitches.
Covers the gradual move from Bell Labs to Princeton, at first part time then full; discusses work on spin glass problem and ramifications for optimization theory and neural networks; reaction to Nobel Prize; return to localization and Gang of Four paper; thoughts on mixed valance problem and heavy electron systems.