Search results
Displaying 1 - 10 of total 22 results:
This interview with A. G. W. Cameron focuses on selected aspects of Cameron's research including nucleosynthesis and use of computers in research. Covers Cameron's different topics of research as well as various institutional appointments. Also comments on style of research and William Fowler's receipt of Nobel prize. Other topics discussed include: his family background and childhood, graduate work at the University of Saskatchewan, Leon Katz, photonuclear reactions, astrophysics, Paul Merrill, galactic evolution, Iowa State teaching nuclear physics, Chalk River, advising work for Atomic Energy Commission (AEC) and Department of Energy (DOE), hydrogen bomb, origin of the moon, Los Alamos National Laboratory, Stirling Colgate, nuclear astrophysics, teaching at Yale University, big bang theory, Harvard Smithsonian Center for Astrophysics, Fred Whipple, Leo Goldberg, Hans Suess, Harold Urey, William Fowler, Fred Hoyle, Geoffrey Burbidge, California Institute of Technology, National Aeronautics and Space Administration (NASA).
In this interview, Edward Uhler Condon discusses topics such as: his family background; early education; influence of high school physics teacher, William Howell Williams, 1914-1918, and later teacher at University of California, Berkeley; interval as boy reporter. Undergraduate years at Berkeley, beginning in 1921 in chemistry department; Ph.D. in physics, 1926; association with Fred Weinberg. Discovery of Erwin Schrödinger's wave mechanics papers; International Education Board fellowship to study quantum mechanics at Göttingen, 1926. Work on Bell Systems technical journal for six months before accepting lectureship at Columbia University; teaching post at Princeton University; Condon and Philip Morse's Quantum Mechanics, result of Columbia and Princeton courses. Relations with University of California; role in persuading Ernest Lawrence to go to Berkeley from Yale University. Recollections of Michigan summer school. Work at Westinghouse on applications of nuclear physics to industry, including completion of Van de Graaff machine, 1937-1940; setting up Westinghouse research fellowships, 1938; Massachusetts Institute of Technology conference on applications of nuclear physics, October 1940; war work on microwave radar. J. Robert Oppenheimer asks Condon to come to Los Alamos Scientific Laboratory; tour of Los Alamos with Leslie Groves; reasons for leaving Los Alamos after a few weeks. Work as head of theoretical section of Lawrence's laboratory, August 1943-1945; British scientists. Evaluation of Westinghouse's four million-volt machine. Description of Nimitron, a physical computer, designed for 1939 World's Fair. Discussion of 1928 radioactivity. Reminiscences of Ronald Gurney's later career and his trouble with security. Discussion of postwar events, such as the Quebec Conference, McMahon Act, Moran's book about Winston Churchill. Peacetime development of atomic energy; establishment of the Senate's Special Committee on atomic energy. Directorship of the National Bureau of Standards (NBS), 1945-1951. Work on superconductivity; W. Emmanuel Maxwell and John Pelham. Accomplishments at NBS. Hearings in 1948 and 1952 before the Department of Commerce under Truman's loyalty program; Averell Harriman. Director of Research at Corning, 1951. House Un-American Activities Committee hearing, 1954; J. R. Oppenheimer and Bernard Peters; reopening of clearances, loss of Corning position; becomes Corning consultant. Head of Washington University physics department, 1956-1963; Oberlin College, 1962; interest in modernizing teaching; Joint Institute for Laboratory Astrophysics (JILA), from 1963; editor of Reviews of Modern Physics, 1957-1968; establishment of the National Accelerator Laboratory (Chicago); the UFO story. Comments on his most satisfying and his least satisfying work. Also prominently mentioned are: Raymond T. Birge and Henry Wallace.
In this interview, Edward Uhler Condon discusses topics such as: his family background; early education; influence of high school physics teacher, William Howell Williams, 1914-1918, and later teacher at University of California, Berkeley; interval as boy reporter. Undergraduate years at Berkeley, beginning in 1921 in chemistry department; Ph.D. in physics, 1926; association with Fred Weinberg. Discovery of Erwin Schrödinger's wave mechanics papers; International Education Board fellowship to study quantum mechanics at Göttingen, 1926. Work on Bell Systems technical journal for six months before accepting lectureship at Columbia University; teaching post at Princeton University; Condon and Philip Morse's Quantum Mechanics, result of Columbia and Princeton courses. Relations with University of California; role in persuading Ernest Lawrence to go to Berkeley from Yale University. Recollections of Michigan summer school. Work at Westinghouse on applications of nuclear physics to industry, including completion of Van de Graaff machine, 1937-1940; setting up Westinghouse research fellowships, 1938; Massachusetts Institute of Technology conference on applications of nuclear physics, October 1940; war work on microwave radar. J. Robert Oppenheimer asks Condon to come to Los Alamos Scientific Laboratory; tour of Los Alamos with Leslie Groves; reasons for leaving Los Alamos after a few weeks. Work as head of theoretical section of Lawrence's laboratory, August 1943-1945; British scientists. Evaluation of Westinghouse's four million-volt machine. Description of Nimitron, a physical computer, designed for 1939 World's Fair. Discussion of 1928 radioactivity. Reminiscences of Ronald Gurney's later career and his trouble with security. Discussion of postwar events, such as the Quebec Conference, McMahon Act, Moran's book about Winston Churchill. Peacetime development of atomic energy; establishment of the Senate's Special Committee on atomic energy. Directorship of the National Bureau of Standards (NBS), 1945-1951. Work on superconductivity; W. Emmanuel Maxwell and John Pelham. Accomplishments at NBS. Hearings in 1948 and 1952 before the Department of Commerce under Truman's loyalty program; Averell Harriman. Director of Research at Corning, 1951. House Un-American Activities Committee hearing, 1954; J. R. Oppenheimer and Bernard Peters; reopening of clearances, loss of Corning position; becomes Corning consultant. Head of Washington University physics department, 1956-1963; Oberlin College, 1962; interest in modernizing teaching; Joint Institute for Laboratory Astrophysics (JILA), from 1963; editor of Reviews of Modern Physics, 1957-1968; establishment of the National Accelerator Laboratory (Chicago); the UFO story. Comments on his most satisfying and his least satisfying work. Also prominently mentioned are: Raymond T. Birge and Henry Wallace.
In this interview, Edward Uhler Condon discusses topics such as: his family background; early education; influence of high school physics teacher, William Howell Williams, 1914-1918, and later teacher at University of California, Berkeley; interval as boy reporter. Undergraduate years at Berkeley, beginning in 1921 in chemistry department; Ph.D. in physics, 1926; association with Fred Weinberg. Discovery of Erwin Schrödinger's wave mechanics papers; International Education Board fellowship to study quantum mechanics at Göttingen, 1926. Work on Bell Systems technical journal for six months before accepting lectureship at Columbia University; teaching post at Princeton University; Condon and Philip Morse's Quantum Mechanics, result of Columbia and Princeton courses. Relations with University of California; role in persuading Ernest Lawrence to go to Berkeley from Yale University. Recollections of Michigan summer school. Work at Westinghouse on applications of nuclear physics to industry, including completion of Van de Graaff machine, 1937-1940; setting up Westinghouse research fellowships, 1938; Massachusetts Institute of Technology conference on applications of nuclear physics, October 1940; war work on microwave radar. J. Robert Oppenheimer asks Condon to come to Los Alamos Scientific Laboratory; tour of Los Alamos with Leslie Groves; reasons for leaving Los Alamos after a few weeks. Work as head of theoretical section of Lawrence's laboratory, August 1943-1945; British scientists. Evaluation of Westinghouse's four million-volt machine. Description of Nimitron, a physical computer, designed for 1939 World's Fair. Discussion of 1928 radioactivity. Reminiscences of Ronald Gurney's later career and his trouble with security. Discussion of postwar events, such as the Quebec Conference, McMahon Act, Moran's book about Winston Churchill. Peacetime development of atomic energy; establishment of the Senate's Special Committee on atomic energy. Directorship of the National Bureau of Standards (NBS), 1945-1951. Work on superconductivity; W. Emmanuel Maxwell and John Pelham. Accomplishments at NBS. Hearings in 1948 and 1952 before the Department of Commerce under Truman's loyalty program; Averell Harriman. Director of Research at Corning, 1951. House Un-American Activities Committee hearing, 1954; J. R. Oppenheimer and Bernard Peters; reopening of clearances, loss of Corning position; becomes Corning consultant. Head of Washington University physics department, 1956-1963; Oberlin College, 1962; interest in modernizing teaching; Joint Institute for Laboratory Astrophysics (JILA), from 1963; editor of Reviews of Modern Physics, 1957-1968; establishment of the National Accelerator Laboratory (Chicago); the UFO story. Comments on his most satisfying and his least satisfying work. Also prominently mentioned are: Raymond T. Birge and Henry Wallace.
In this interview, Edward Creutz discusses topics such as: his family background; Gregory Breit; doing his postgraduate work at the University of Wisconsin on nuclear physics; Ray Herb; Julian Mack; Fred de Hoffmann; Eugene Wigner; going to Princeton as a research assistant working on the small cyclotron; Carnegie Institute of Technology; Frederick Seitz; Office of Naval Research (ONR); Urner Liddel; Atomic Energy Commission (AEC); helping to build the first commercial nuclear reactor; working in the metallurgical lab at the University of Chicago working on the metallurgy of uranium; General Dynamics and General Atomic; Los Alamos; Niels Bohr; Richard Courant; TRIGA (Training Research Isotopes General Atomic) reactors; Lothar Nordheim; Hans Bethe; Edward Teller; Richard Feynman; Ted Taylor; Marshall Rosenbluth; Doug Fouquet; High Temperature Gas-cooled Reactor (HTGR); Freeman Dyson; Don Kerst.
In this interview, Edward Creutz discusses topics such as: his family background; Gregory Breit; doing his postgraduate work at the University of Wisconsin on nuclear physics; Ray Herb; Julian Mack; Fred de Hoffmann; Eugene Wigner; going to Princeton as a research assistant working on the small cyclotron; Carnegie Institute of Technology; Frederick Seitz; Office of Naval Research (ONR); Urner Liddel; Atomic Energy Commission (AEC); helping to build the first commercial nuclear reactor; working in the metallurgical lab at the University of Chicago working on the metallurgy of uranium; General Dynamics and General Atomic; Los Alamos; Niels Bohr; Richard Courant; TRIGA (Training Research Isotopes General Atomic) reactors; Lothar Nordheim; Hans Bethe; Edward Teller; Richard Feynman; Ted Taylor; Marshall Rosenbluth; Doug Fouquet; High Temperature Gas-cooled Reactor (HTGR); Freeman Dyson; Don Kerst.
Topics discussed include: his family history, his educational background, beginnings of nuclear physics and particle acceleration, Cockcroft-Walton generator, his fellowship at the Massachusetts Institute of Technology (MIT), his World War II research at the MIT radiation lab on radar systems, his time at the Brookhaven National Laboratory, his work with various accelerators including the Cosmotron, and his time with the Atomic Energy Commission and the National Science Foundation.
The interview ranges from Inglis’ youth and family origins to his current (1977) activities. Topics include his student days (Amherst College 1924-28, Ann Arbor 1928-31), contact with European physicists and rising Nazism (1932-13), the physics departments at Ohio State, University of Pittsburgh, Princeton, and Johns Hopkins in the 1930’s, and the last of these in the 1940’s; atomic spectroscopy, ferromagnetism, uses of the vector model, shift from atomic to nuclear spectroscopy, the Thomas precession and spin-orbit coupling in nuclei, shell and droplet models for nuclei, intermediate coupling model for light nuclei, the earth’s magnetic field, wind-dynamos and nuclear reactors; Los Alamos during World War II, Argonne Laboratory in the 1950’s and 60’s; expression of social concern, especially in relation to the nuclear arms race, in the 1950’s through the Bulletin of the Atomic Scientists, the political victimization of Donald Flanders, the Federation of American Scientists, congressional testimony concerning Lewis Strauss’ (nominee for Sec. of Commerce) experiences at Pugwash Conferences, obstacles to slowing or reversing the arms race.
The interview ranges from Inglis’ youth and family origins to his current (1977) activities. Topics include his student days (Amherst College 1924-28, Ann Arbor 1928-31), contact with European physicists and rising Nazism (1932-13), the physics departments at Ohio State, University of Pittsburgh, Princeton, and Johns Hopkins in the 1930’s, and the last of these in the 1940’s; atomic spectroscopy, ferromagnetism, uses of the vector model, shift from atomic to nuclear spectroscopy, the Thomas precession and spin-orbit coupling in nuclei, shell and droplet models for nuclei, intermediate coupling model for light nuclei, the earth’s magnetic field, wind-dynamos and nuclear reactors; Los Alamos during World War II, Argonne Laboratory in the 1950’s and 60’s; expression of social concern, especially in relation to the nuclear arms race, in the 1950’s through the Bulletin of the Atomic Scientists, the political victimization of Donald Flanders, the Federation of American Scientists, congressional testimony concerning Lewis Strauss’ (nominee for Sec. of Commerce) experiences at Pugwash Conferences, obstacles to slowing or reversing the arms race.
Childhood and early education in New York, undergraduate education in philosophy at Columbia College, 1932-1936; years of graduate study in physics at Columbia University, 1936-1937; influence of Isidor I. Rabi, the joint NYU-Columbia seminar in physics; transfer to Cornell University for graduate work in nuclear physics, 1937-1939; influence of Hans Bethe; thesis work on white dwarfs; first teaching position at University of Rochester, joint work with Victor Weisskopf in nuclear physics and particles; remarks on war years, astrophysics, cyclotrons, and other matters; Shelter Island Conferences. Formation of the Federation of American Scientists (F.A.S.) in 1946; Marshak succeeds Robert Wilson as Chairman, 1947. World Federation of Scientific workers, chaired by Frédéric Joliot-Curie, wants to enroll F.A.S. (1947, in Paris meeting). Marshak's work on two-meson theory. F.A.S. issues in the 1950s; the Emergency Committee and F.A.S.; Einstein's interests and views on relation of science to society; comments on J. Robert Oppenheimer; chairmanship at University of Rochester; Lee DuBridge; long-range plan and extensive development of physics department funded through AEC contracts; training of students from abroad such as Okubo, Sudarshan, Messiah, Regge. Last half of interview covers the Rochester conferences. Scientific work during the 1950s, the V-A interaction (George Sudarshan) theory (a.k.a. Feynman-Gell-Mann theory of weak interactions); books and works with graduate students. Travels to Europe and India (Tata Institute), 1953. Accepts City College (CUNY) presidency; reasons for leaving University of Rochester. Also prominently mentioned are: Robert Fox Bacher, Subrahmanyan Chandrasekhar, George Braxton Pegram, Julian R. Schwinger, Edward Teller; Lawrence Radiation Laboratory, and Massachusetts Institute of Technology Radiation Laboratory.