Search results
Displaying 1 - 10 of total 21 results:
Postgraduate work at University of Chicago; early work in spectroscopy using the Fabry-Perot interferometer; studies of e/m and hydrogen fine structure. Study at Universität München with Arnold Sommerfeld and the development in electron spin research in the 1930s; work with and impressions of Werner Heisenberg and others. Later work in solid state; interest in quantum statistics and its relation to statistics of ensemble. Discussion of major problems in modern physics; teaching methods and responsibilities, administration and research, solid state developments.
The interview ranges from Inglis’ youth and family origins to his current (1977) activities. Topics include his student days (Amherst College 1924-28, Ann Arbor 1928-31), contact with European physicists and rising Nazism (1932-13), the physics departments at Ohio State, University of Pittsburgh, Princeton, and Johns Hopkins in the 1930’s, and the last of these in the 1940’s; atomic spectroscopy, ferromagnetism, uses of the vector model, shift from atomic to nuclear spectroscopy, the Thomas precession and spin-orbit coupling in nuclei, shell and droplet models for nuclei, intermediate coupling model for light nuclei, the earth’s magnetic field, wind-dynamos and nuclear reactors; Los Alamos during World War II, Argonne Laboratory in the 1950’s and 60’s; expression of social concern, especially in relation to the nuclear arms race, in the 1950’s through the Bulletin of the Atomic Scientists, the political victimization of Donald Flanders, the Federation of American Scientists, congressional testimony concerning Lewis Strauss’ (nominee for Sec. of Commerce) experiences at Pugwash Conferences, obstacles to slowing or reversing the arms race.
The interview ranges from Inglis’ youth and family origins to his current (1977) activities. Topics include his student days (Amherst College 1924-28, Ann Arbor 1928-31), contact with European physicists and rising Nazism (1932-13), the physics departments at Ohio State, University of Pittsburgh, Princeton, and Johns Hopkins in the 1930’s, and the last of these in the 1940’s; atomic spectroscopy, ferromagnetism, uses of the vector model, shift from atomic to nuclear spectroscopy, the Thomas precession and spin-orbit coupling in nuclei, shell and droplet models for nuclei, intermediate coupling model for light nuclei, the earth’s magnetic field, wind-dynamos and nuclear reactors; Los Alamos during World War II, Argonne Laboratory in the 1950’s and 60’s; expression of social concern, especially in relation to the nuclear arms race, in the 1950’s through the Bulletin of the Atomic Scientists, the political victimization of Donald Flanders, the Federation of American Scientists, congressional testimony concerning Lewis Strauss’ (nominee for Sec. of Commerce) experiences at Pugwash Conferences, obstacles to slowing or reversing the arms race.
This interview was conducted as part of the Archives for the History of Quantum Physics project, which includes tapes and transcripts of oral history interviews conducted with circa 100 atomic and quantum physicists. Subjects discuss their family backgrounds, how they became interested in physics, their educations, people who influenced them, their careers including social influences on the conditions of research, and the state of atomic, nuclear, and quantum physics during the period in which they worked. Discussions of scientific matters relate to work that was done between approximately 1900 and 1930, with an emphasis on the discovery and interpretations of quantum mechanics in the 1920s. Also prominently mentioned are: Sam Allison, Svante August Arrhenius, Raymond Thayer Birge, William Henry Bragg, William Lawrence Bragg, Arthur Compton, Edward Condon, Marie Curie, Peter Josef William Debye, William Duane, Tatiana Ehrenfest, Paul Ehrenfest, Albert Einstein, Paul Darwin Foote, James Franck, Helmut Hasse, Arthur Llewelyn Hughes, Frederick Vinton Hunt, Mrs. Langevin, Paul Langevin, Irving Langmuir, Harvey Brace Lemon, Gilbert Newton Lewis, Hendrik Antoon Lorentz, A. C. Lunn, McClellan, Albert Abraham Michelson, Mrs. Millikan, Robert Andrews Millikan, Murphy, Jean Perrin, Max Planck, Ross, Ernest Rutherford, Mrs. Rutherford, Hertha Sponer-Franck, John T. Tate, John Sealy Edward Townsend, Harold Clayton Urey, van der Bijl, David Webster, Joseph Weinberg, Williams, Mrs. Bloomfield Zeissler; Acadèmie des Sciences, British Association meeting in Toronto (1924), University of Chicago, Columbia University, Universität Göttingen, and Solvay Congress (1911).
Family life and early childhood environment; undergraduate studies at Case School for Applied Sciences, 1925-1929; M.S., 1933; influence of Dayton C. Miller; reanalysis of Miller’s absolute motion experiments, meetings with Albert Einstein; National Bureau of Standards (NBS) work on ionosphere and standard frequency regulation, 1929-1930; contact with University of Chicago, l930s and 1940s, thesis work on photon scattering under Arthur H. Compton, 1935; World War II sonar work in submarine warfare; architectural acoustics interests; tasks as Chairman of Physics Department at Case Western Reserve University, 1940-1958; consultant to Argonne National Laboratory, neutrino experiments, 1953-1969. Associations with D. C. Miller and A. H. Compton, their experimental style, personalities and influences on others; climate of opinion around relativity and quantum mechanics; the crucial Michelson-Morley experiments and others in relativity; comments on the resistance of the older generation of physicists; reaction to fission and the atomic bomb; problems of modern physics and comments on relation between pure and applied sciences, the existence of a scientific method, physics as related to other sciences, approaches to the history of science. Also prominently mentioned are: Samuel K. Allison, Luis Walter Alvarez, Samuel Austin, Raymond Thayer Birge, R. Blondlot, Niels Henrik David Bohr, C. P. Boner, Bragg, William Lawrence, Sir, Gregory Breit, Karl Taylor Compton, Walter Dale Compton, Karl Kelchner Darrow, R. L. Doan, Saul Dushman, Carl Henry Eckart, Thomas Alva Edison, Enrico Fermi, Armand Hippolyte Fizeau, Lester L. Foldy, Gustav Ludwig Hertz, Oliver Wendell Holmes, F. R. von Horn, J. W. Horton, William Vermillion Houston, Frank Clark Hoyt, Z. Jeffries, Edwin Crawford Kemble, G. Kuerti, Joseph Larmor, Ernest Orlando Lawrence, F. Leone, Hendrik Antoon Lorentz, W. H. Martin, Emanuel Maxwell, Sidney McCuskey, Albert Abraham Michelson, Dayton C. Miller, Robert Andrews Millikan, Jason John Nassau, J. Robert Oppenheimer, Henri Poincare, Baron Rayleigh, John William Strutt, Owen Willans Richardson, Henry A. Rowland, Henry Norris Russell, Ernest Rutherford, Harlow Shapley, John Clarke Slater, G. Szell, John Torrence Tate, Geoffrey Ingram Taylor, Joseph John Thomson, Merle Antony Tuve, John Hasbrouck Van Vleck, M. Walsh, M. Walters, Robert Williams Wood; Bell Telephone Laboratories, Case School of Applied Science, George Washington University Law School, Mount Wilson Observatory, Phillips Petroleum Co., United States Navy New London Laboratory, and United States Office of Scientific Research and Development.
Arrival in the U.S. in 1930; comparison of social, scientific, general intellectual climates in U.S and Europe; early interest in nuclear physics, relationship with graduate students; beta decay, compound nucleus model, Breit-Wigner formula, early shell model; review articles by Bethe; relation of early meson theory to nuclear physics; nuclear forces; charge independence; journal literature of physics ca. 1937; effectiveness of group-theoretic models in nuclear physics; effectiveness of quantum mechanics for nuclear physics; significant early experimental discoveries in nuclear physics: neutron, deutron, artificial radioactivity; fission, shell model of Mayer and Jensen; rotational levels in nuclei; the specialization of physics; effect of World War II on nuclear physics research; work at Chicago; conferences after the war; branching off of high-energy physics from nuclear physics; work personally regarded as interesting.
Family life and early childhood environment; undergraduate studies at Case School for Applied Sciences (1925-29), M.S. 1933, influence of D.C. Miller; reanalysis of Miller’s absolute motion experiments, meetings with Einstein; National Bureau of Standards work on ionosphere and standard frequency regulation 1929-30; contact with University of Chicago (1930’s and 1940’s), thesis work on photon scattering under A.H. Compton, 1935; World War II sonar work in submarine warfare; architectural acoustics interests; tasks as Chairman of Physics Department at Case Western Reserve University 1940-58; consultant to Argonne National Laboratory, neutrino experiments,1953-69. Additional topics include: associations with D.C. Miller and A.H. Compton, their experimental style, personalities and influences on others; the climate of opinion around relativity and quantum mechanics; crucial experiments of Michelson-Morley and others in relativity; comments on the resistance of the older generation of physicists; RS’s reaction to fission and the atomic bomb; problems of modern physics and comments on the relation between pure and applied sciences, the existence of a scientific method, physics as related to other sciences, approaches to the history of science.
Transfers from Ohio Wesleyan to Case. Works for Chase Machine Company. Enters physics. Research with Professor Miller, instruments used, experiments performed. Describes his coursework, graduate thesis, and mathematics at Case. Mentions Miller's research. What was known and discussed about the quantum and Millikan's unitary theory of light at this time. At Carnegie Tech. meets Knox and Hauer and runs the freshman laboratory. Describes the atmosphere at Carnegie. Begins a fellowship at Harvard in the fall of 1913. Studies under Wallace Sabine, Osgood, Maxime Bêcher, and B.O. Peirce, Bridgman, and Harvey Davis. Mentions Duane. Discusses the physics and mathematics departments at Harvard. Bridgman's potential theory course discussed. Describes unsettling problems in physics during this period. Harvard's weekly colloquium. Thesis and collaboration with Jim Brinsmaid. Ideas he had about future research topics. Classical emissions. Bohr atom as appreciated at Harvard and the reception of quantum theory following the War. Complications in physics at the time of the interview. Instructs at Harvard after the War. Researches helium spectrum, band spectra, integral pdq equaling nh. Visits Germany in 1927, his readings in German physics. Mentions his Ph.D. student, Van Vleck. Hamilton-Jacobi techniques. Discusses theoretical physics before quantum theory. Describes Duane, his research, Duane grating theory. De Broglie's paper on the wave properties of the electron. How the discovery of the Compton effect was perceived at Harvard. Webster, Webster's career following quantum theory described. Mentions the backwardness of theoretical physics and mathematics in the United States. Writing his book, his work on general education explored. Mentions his bibliography. Included is a letter from Kemble detailing his first references to Bohr.
Transfers from Ohio Wesleyan to Case. Works for Chase Machine Company. Enters physics. Research with Professor Miller, instruments used, experiments performed. Describes his coursework, graduate thesis, and mathematics at Case. Mentions Miller's research. What was known and discussed about the quantum and Millikan's unitary theory of light at this time. At Carnegie Tech. meets Knox and Hauer and runs the freshman laboratory. Describes the atmosphere at Carnegie. Begins a fellowship at Harvard in the fall of 1913. Studies under Wallace Sabine, Osgood, Maxime Bêcher, and B.O. Peirce, Bridgman, and Harvey Davis. Mentions Duane. Discusses the physics and mathematics departments at Harvard. Bridgman's potential theory course discussed. Describes unsettling problems in physics during this period. Harvard's weekly colloquium. Thesis and collaboration with Jim Brinsmaid. Ideas he had about future research topics. Classical emissions. Bohr atom as appreciated at Harvard and the reception of quantum theory following the War. Complications in physics at the time of the interview. Instructs at Harvard after the War. Researches helium spectrum, band spectra, integral pdq equaling nh. Visits Germany in 1927, his readings in German physics. Mentions his Ph.D. student, Van Vleck. Hamilton-Jacobi techniques. Discusses theoretical physics before quantum theory. Describes Duane, his research, Duane grating theory. De Broglie's paper on the wave properties of the electron. How the discovery of the Compton effect was perceived at Harvard. Webster, Webster's career following quantum theory described. Mentions the backwardness of theoretical physics and mathematics in the United States. Writing his book, his work on general education explored. Mentions his bibliography. Included is a letter from Kemble detailing his first references to Bohr.
This interview was conducted as part of the Archives for the History of Quantum Physics project, which includes tapes and transcripts of oral history interviews conducted with ca. 100 atomic and quantum physicists. Subjects discuss their family backgrounds, how they became interested in physics, their educations, people who influenced them, their careers including social influences on the conditions of research, and the state of atomic, nuclear, and quantum physics during the period in which they worked. Discussions of scientific matters relate to work that was done between approximately 1900 and 1930, with an emphasis on the discovery and interpretations of quantum mechanics in the 1920s. Also prominently mentioned are: Guido Beck, Richard Becker, Patrick Maynard Stuart Blackett, Harald Bohr, Niels Henrik David Bohr, Max Born, Gregory Breit, Burrau, Constantin Caratheodory, Geoffrey Chew, Arthur Compton, Richard Courant, Charles Galton Darwin, Peter Josef William Debye, David Mathias Dennison, Paul Adrien Maurice Dirac, Dopel, Drude (Paul's son), Paul Drude, Paul Ehrenfest, Albert Einstein, Walter M. Elsasser, Enrico Fermi, Richard Feynman, John Stuart Foster, Ralph Fowler, James Franck, Walther Gerlach, Walter Gordon, Hans August Georg Grimm, Wilhelm Hanle, G. H. Hardy, Karl Ferdinand Herzfeld, David Hilbert, Helmut Honl, Heinz Hopf, Friedrich Hund, Ernst Pascual Jordan, Oskar Benjamin Klein, Walter Kossel, Hendrik Anthony Kramers, Adolph Kratzer, Ralph de Laer Kronig, Rudolf Walther Ladenburg, Alfred Lande, Wilhelm Lenz, Frederic Lindemann (Viscount Cherwell), Mrs. Maar, Majorana (father), Ettore Majorana, Fritz Noether, J. Robert Oppenheimer, Franca Pauli, Wolfgang Pauli, Robert Wichard Pohl, Arthur Pringsheim, Ramanujan, A. Rosenthal, Adalbert Wojciech Rubinowicz, Carl Runge, R. Sauer, Erwin Schrodiner, Selmeyer, Hermann Senftleben, John Clarke Slater, Arnold Sommerfeld, Johannes Stark, Otto Stern, Tllmien, B. L. van der Waerden, John Hasbrouck Van Vleck, Woldemar Voigt, John Von Neumann, A. Voss, Victor Frederick Weisskopf, H. Welker, Gregor Wentzel, Wilhelm Wien, Eugene Paul Wigner; Como Conference, Kapitsa Club, Kobenhavns Universitet, Solvay Congress (1927), Solvay Congress (1962), Universitat Gottingen, Universitat Leipzig, Universitat Munchen, and University of Chicago.