Search results
Displaying 1 - 5 of total 5 results:
Family background; early interest in mathematics; physics at University of Manchester; Ernest Rutherford's influence; early research under Rutherford at Manchester; examination by Joseph J. Thomson for degree; recollections of associates at Manchester, including Niels Bohr; scholarship to Universität Berlin and work there with Hans Geiger; internment during World War I; scientific work at internment camp; return to Manchester; move with Rutherford to University of Cambridge; appointment as Assistant Director of Research at Cavendish Laboratory (ca. 1923); work with Rutherford on artificial disintegration; Rutherford's idea of the neutron; early experimental search for neutron; duties and experiences at the Cavendish Laboratory from 1919 to 1936; Rutherford's personality; Solvay conference of 1933; reasons for leaving Cambridge for University of Liverpool; initial plans, personnel and activities at Liverpool; cyclotron; award of Nobel Prize; encounter with Joliots, also in Stockholm for Prize in chemistry; influx of refugee theoreticians; work on the meson; changes effected by large machines; recollections of announcement of fission; World War II work; involvement with A-bomb project, Los Alamos Scientific Laboratory and General Leslie Groves; postwar considerations regarding international control of atomic energy; effect of Rutherford's death on Cavendish; return to Cambridge as Master of Gonville and Caius College; circumstances of resignation as Master; appraisal of personal satisfactions. Also prominently mentioned are: H. K. Anderson, John Anderson, Homi Bhabha, Patrick Maynard Stuart Blackett, Niels Henrik David Bohr, Paul Adrien Maurice Dirac, Albert Einstein, Charles D. Ellis, Walter M. Elsasser, Ralph Howard Fowler, Maurice Goldhaber, Otto Hahn, Walter Heitler, J. R. Holt, Ernest Orlando Lawrence, Douglas Lea, Lise Meitner, Stefan Meyer, Henry N. Moseley, Walther Nernst, Giuseppe Occhialini, Mark Oliphant, Maurice H. L. Pryce, Stanley Rolands, Heinrich Rubens, Joseph John Thomson, Merle Antony Tuve, Walke, H. C. Webster, Charles Thomson Rees Wilson; Department of Scientific and Industrial Research of Great Britain, Manchester Literary and Philosophical Society, Ministry of Aircraft Uranium Development Committee (Great Britain), Physikalische-Technische Reichsanstalt, Royal Society (Great Britain), University of Birmingham, University of Cambridge Cavendish Physical Society, and University of Liverpool.
Origin of interest in nuclear physics, discussions of compound nucleus, Copenhagen, 1936; work on interaction of evaporation and nuclear temperature, 1936; Breit-Wigner formula; application of evaporation model to nuclear reactions; postwar work in electrodynamics and nuclear reactions; relative merits of compound nucleus and shell models, 1950-51; explanation of independent particle motion by Pauli principle, 1951; estimates of shell model radiative transition probabilities; optical model and relation to compound nucleus models, 1953-55; emigration to U.S., 1937; initial impressions of American physics community; teaching and research at University of Rochester, 1937-43; visits to Cornell University; elaboration of evaporation model; effect of Bethe-Bacher-Livingston REV. MOD. PHYS. review articles, 1936-37; contact with physicists at American institutions; summer schools in U.S. and Europe; role of conferences; centers of nuclear physics research, 1930s; the atmosphere and social aspects of life at Los Alamos and subsequent effect on physics, 1943-47; effect of war work at MIT on electrodynamics and nuclear models, 1947-55; visits to Brookhaven; collective model; role of nuclear spectroscopy; origins of high-energy physics; relations among nuclear structure, meson physics, and field theory; current (1966) work in nuclear physics in Europe; the future of nuclear physics.
Origin of interest in nuclear physics, discussions of compound nucleus, Copenhagen, 1936; work on interaction of evaporation and nuclear temperature, 1936; Breit-Wigner formula; application of evaporation model to nuclear reactions; postwar work in electrodynamics and nuclear reactions; relative merits of compound nucleus and shell models, 1950-51; explanation of independent particle motion by Pauli principle, 1951; estimates of shell model radiative transition probabilities; optical model and relation to compound nucleus models, 1953-55; emigration to U.S., 1937; initial impressions of American physics community; teaching and research at University of Rochester, 1937-43; visits to Cornell University; elaboration of evaporation model; effect of Bethe-Bacher-Livingston REV. MOD. PHYS. review articles, 1936-37; contact with physicists at American institutions; summer schools in U.S. and Europe; role of conferences; centers of nuclear physics research, 1930s; the atmosphere and social aspects of life at Los Alamos and subsequent effect on physics, 1943-47; effect of war work at MIT on electrodynamics and nuclear models, 1947-55; visits to Brookhaven; collective model; role of nuclear spectroscopy; origins of high-energy physics; relations among nuclear structure, meson physics, and field theory; current (1966) work in nuclear physics in Europe; the future of nuclear physics.
Arrival in the U.S. in 1930; comparison of social, scientific, general intellectual climates in U.S and Europe; early interest in nuclear physics, relationship with graduate students; beta decay, compound nucleus model, Breit-Wigner formula, early shell model; review articles by Bethe; relation of early meson theory to nuclear physics; nuclear forces; charge independence; journal literature of physics ca. 1937; effectiveness of group-theoretic models in nuclear physics; effectiveness of quantum mechanics for nuclear physics; significant early experimental discoveries in nuclear physics: neutron, deutron, artificial radioactivity; fission, shell model of Mayer and Jensen; rotational levels in nuclei; the specialization of physics; effect of World War II on nuclear physics research; work at Chicago; conferences after the war; branching off of high-energy physics from nuclear physics; work personally regarded as interesting.
Family background; early interest in mathematics; physics at University of Manchester; Ernest Rutherford's influence; early research under Rutherford at Manchester; examination by Joseph J. Thomson for degree; recollections of associates at Manchester, including Niels Bohr; scholarship to Universität Berlin and work there with Hans Geiger; internment during World War I; scientific work at internment camp; return to Manchester; move with Rutherford to University of Cambridge; appointment as Assistant Director of Research at Cavendish Laboratory (ca. 1923); work with Rutherford on artificial disintegration; Rutherford's idea of the neutron; early experimental search for neutron; duties and experiences at the Cavendish Laboratory from 1919 to 1936; Rutherford's personality; Solvay conference of 1933; reasons for leaving Cambridge for University of Liverpool; initial plans, personnel and activities at Liverpool; cyclotron; award of Nobel Prize; encounter with Joliots, also in Stockholm for Prize in chemistry; influx of refugee theoreticians; work on the meson; changes effected by large machines; recollections of announcement of fission; World War II work; involvement with A-bomb project, Los Alamos Scientific Laboratory and General Leslie Groves; postwar considerations regarding international control of atomic energy; effect of Rutherford's death on Cavendish; return to Cambridge as Master of Gonville and Caius College; circumstances of resignation as Master; appraisal of personal satisfactions. Also prominently mentioned are: H. K. Anderson, John Anderson, Homi Bhabha, Patrick Maynard Stuart Blackett, Niels Henrik David Bohr, Paul Adrien Maurice Dirac, Albert Einstein, Charles D. Ellis, Walter M. Elsasser, Ralph Howard Fowler, Maurice Goldhaber, Otto Hahn, Walter Heitler, J. R. Holt, Ernest Orlando Lawrence, Douglas Lea, Lise Meitner, Stefan Meyer, Henry N. Moseley, Walther Nernst, Giuseppe Occhialini, Mark Oliphant, Maurice H. L. Pryce, Stanley Rolands, Heinrich Rubens, Joseph John Thomson, Merle Antony Tuve, Walke, H. C. Webster, Charles Thomson Rees Wilson; Department of Scientific and Industrial Research of Great Britain, Manchester Literary and Philosophical Society, Ministry of Aircraft Uranium Development Committee (Great Britain), Physikalische-Technische Reichsanstalt, Royal Society (Great Britain), University of Birmingham, University of Cambridge Cavendish Physical Society, and University of Liverpool.