Search results
Displaying 1 - 10 of total 33 results:
Family background; early interest in physics; chance meeting with Enrico Fermi in youth and early friendship with Emilio Segrè; enrolling in physics at University of Rome; recollections of Orso M. Corbino; 1931 Rome Conference on Nuclear Physics; 1934 visit to Cambridge with Segrè; transition from spectroscopy to nuclear physics work at Rome; reaction to discovery of neutron; Ettore Majorana's work; slow neutron experiments; Fermi's approach toward theory and experiment; failure to discover fission; break-up of Rome group; 1936 trip to America; construction of two accelerators at Rome; 1939 trip to America; decision to discontinue fission experiments at Rome; usefulness of Hans A. Bethe's review articles; style of Rome group; physics elsewhere in Italy during 1930s; contacts with physicists outside Rome during 1930s; Italian physics during the war; postwar concern with elementary particles; recollections of Fermi in postwar period; work considered personally satisfying. Also prominently mentioned are: Herbert Anderson, Gilberto Bernardini, Torkild Bjerge, Patrick Maynard Stuart Blackett, Niels Henrik David Bohr, James Chadwick, Conversi, Otto Robert Frisch, George Gamow, Ettore Majorana, Pancini, Oreste Piccioni, George Placzek, Franco D. Rasetti, Westcott; Accademia Nazionale (Italy), Cavendish Laboratory, Columbia University, Conference on Nuclear Physics (1931 : Rome, Italy), Istituto superiore di sanità, and University of California at Berkeley, CA.
Family background; early interest in physics; chance meeting with Enrico Fermi in youth and early friendship with Emilio Segrè; enrolling in physics at University of Rome; recollections of Orso M. Corbino; 1931 Rome Conference on Nuclear Physics; 1934 visit to Cambridge with Segrè; transition from spectroscopy to nuclear physics work at Rome; reaction to discovery of neutron; Ettore Majorana's work; slow neutron experiments; Fermi's approach toward theory and experiment; failure to discover fission; break-up of Rome group; 1936 trip to America; construction of two accelerators at Rome; 1939 trip to America; decision to discontinue fission experiments at Rome; usefulness of Hans A. Bethe's review articles; style of Rome group; physics elsewhere in Italy during 1930s; contacts with physicists outside Rome during 1930s; Italian physics during the war; postwar concern with elementary particles; recollections of Fermi in postwar period; work considered personally satisfying. Also prominently mentioned are: Herbert Anderson, Gilberto Bernardini, Torkild Bjerge, Patrick Maynard Stuart Blackett, Niels Henrik David Bohr, James Chadwick, Conversi, Otto Robert Frisch, George Gamow, Ettore Majorana, Pancini, Oreste Piccioni, George Placzek, Franco D. Rasetti, Westcott; Accademia Nazionale (Italy), Cavendish Laboratory, Columbia University, Conference on Nuclear Physics (1931 : Rome, Italy), Istituto superiore di sanità, and University of California at Berkeley, CA.
Recollections of physics community in 1920s and early 1930s; opportunities for physics work in Europe; awareness of political climate in Germany (1932); relationship with Werner Heisenberg at University of Leipzig; awarded Rockefeller Fellowship to study at University of Rome; contacts with physicists after Leipzig and before Rome; John Von Neumann's list of refugee physicists; offered appointment to position at Stanford University; visit to University of Copenhagen and Niels Bohr's advice to accept appointment; relinquishing of second half of fellowship; influenced by Bohr, Heisenberg and others; Bloch's influence on Enrico Fermi leading to theory of neutrino; met by Gregory Breit on arrival in New York; initial teaching duties at Stanford; theoretical physics in America in 1934; distinctions between Europe and America on theory vs. experiment; seminars with J. Robert Oppenheimer; first interest in experimental work; early research on neutrons; recollections of 1935 Michigan Summer School; started Stanford Summer School in 1936 with George Gamow as first visitor (Fermi 1937, Isidor Isaac Rabi 1938, Victor F. Weisskopf 1939); origin of idea of neutron polarization; 1936 paper proposing neutron magnetic moment experiment; 1937 Galvani Conference in Bologna; use of Berkeley 37-inch cyclotron for magnetic moment experiment; decision to build cyclotron at Stanford; construction supported by Rockefeller Foundation; initial involvement with Manhattan Project; recollections of receiving news of fission; neutron work for Manhattan Project at Stanford; marriage in 1940; work on implosion at Los Alamos Scientific Laboratory; reasons for leaving Los Alamos; work on radar at Harvard University; first ideas on measuring nuclear magnetic resonance (NMR); helpfulness of radar experience in NMR work; William W. Hansen and the klystron; fate of the first Stanford cyclotron; knowledge of Edward M. Purcell's work on NMR; publication of initial results, 1946-1948; Rabi and Polykarp Kusch's work on molecular beams; development of NMR field; Nobel Prize award; association with CERN, 1954; contributions of greatest impact.
Family background; early interest in mathematics; physics at University of Manchester; Ernest Rutherford's influence; early research under Rutherford at Manchester; examination by Joseph J. Thomson for degree; recollections of associates at Manchester, including Niels Bohr; scholarship to Universität Berlin and work there with Hans Geiger; internment during World War I; scientific work at internment camp; return to Manchester; move with Rutherford to University of Cambridge; appointment as Assistant Director of Research at Cavendish Laboratory (ca. 1923); work with Rutherford on artificial disintegration; Rutherford's idea of the neutron; early experimental search for neutron; duties and experiences at the Cavendish Laboratory from 1919 to 1936; Rutherford's personality; Solvay conference of 1933; reasons for leaving Cambridge for University of Liverpool; initial plans, personnel and activities at Liverpool; cyclotron; award of Nobel Prize; encounter with Joliots, also in Stockholm for Prize in chemistry; influx of refugee theoreticians; work on the meson; changes effected by large machines; recollections of announcement of fission; World War II work; involvement with A-bomb project, Los Alamos Scientific Laboratory and General Leslie Groves; postwar considerations regarding international control of atomic energy; effect of Rutherford's death on Cavendish; return to Cambridge as Master of Gonville and Caius College; circumstances of resignation as Master; appraisal of personal satisfactions. Also prominently mentioned are: H. K. Anderson, John Anderson, Homi Bhabha, Patrick Maynard Stuart Blackett, Niels Henrik David Bohr, Paul Adrien Maurice Dirac, Albert Einstein, Charles D. Ellis, Walter M. Elsasser, Ralph Howard Fowler, Maurice Goldhaber, Otto Hahn, Walter Heitler, J. R. Holt, Ernest Orlando Lawrence, Douglas Lea, Lise Meitner, Stefan Meyer, Henry N. Moseley, Walther Nernst, Giuseppe Occhialini, Mark Oliphant, Maurice H. L. Pryce, Stanley Rolands, Heinrich Rubens, Joseph John Thomson, Merle Antony Tuve, Walke, H. C. Webster, Charles Thomson Rees Wilson; Department of Scientific and Industrial Research of Great Britain, Manchester Literary and Philosophical Society, Ministry of Aircraft Uranium Development Committee (Great Britain), Physikalische-Technische Reichsanstalt, Royal Society (Great Britain), University of Birmingham, University of Cambridge Cavendish Physical Society, and University of Liverpool.
Family background; early interest in mathematics; physics at University of Manchester; Ernest Rutherford's influence; early research under Rutherford at Manchester; examination by Joseph J. Thomson for degree; recollections of associates at Manchester, including Niels Bohr; scholarship to Universität Berlin and work there with Hans Geiger; internment during World War I; scientific work at internment camp; return to Manchester; move with Rutherford to University of Cambridge; appointment as Assistant Director of Research at Cavendish Laboratory (ca. 1923); work with Rutherford on artificial disintegration; Rutherford's idea of the neutron; early experimental search for neutron; duties and experiences at the Cavendish Laboratory from 1919 to 1936; Rutherford's personality; Solvay conference of 1933; reasons for leaving Cambridge for University of Liverpool; initial plans, personnel and activities at Liverpool; cyclotron; award of Nobel Prize; encounter with Joliots, also in Stockholm for Prize in chemistry; influx of refugee theoreticians; work on the meson; changes effected by large machines; recollections of announcement of fission; World War II work; involvement with A-bomb project, Los Alamos Scientific Laboratory and General Leslie Groves; postwar considerations regarding international control of atomic energy; effect of Rutherford's death on Cavendish; return to Cambridge as Master of Gonville and Caius College; circumstances of resignation as Master; appraisal of personal satisfactions. Also prominently mentioned are: H. K. Anderson, John Anderson, Homi Bhabha, Patrick Maynard Stuart Blackett, Niels Henrik David Bohr, Paul Adrien Maurice Dirac, Albert Einstein, Charles D. Ellis, Walter M. Elsasser, Ralph Howard Fowler, Maurice Goldhaber, Otto Hahn, Walter Heitler, J. R. Holt, Ernest Orlando Lawrence, Douglas Lea, Lise Meitner, Stefan Meyer, Henry N. Moseley, Walther Nernst, Giuseppe Occhialini, Mark Oliphant, Maurice H. L. Pryce, Stanley Rolands, Heinrich Rubens, Joseph John Thomson, Merle Antony Tuve, Walke, H. C. Webster, Charles Thomson Rees Wilson; Department of Scientific and Industrial Research of Great Britain, Manchester Literary and Philosophical Society, Ministry of Aircraft Uranium Development Committee (Great Britain), Physikalische-Technische Reichsanstalt, Royal Society (Great Britain), University of Birmingham, University of Cambridge Cavendish Physical Society, and University of Liverpool.
Three years of preparation which led up to achievement, with Ernest T. S. Walton in 1932, of the first artificial transmutation of elements by accelerated protons, and the joyous reactions of his colleagues at the Cavendish Laboratory. With a three month grant from the Rockefeller Foundation, in 1933 visits with Robert Van de Graaff in Boston, Merle Tuve in Washington, Charles Lauritsen in Pasadena and Ernest O. Lawrence in Berkeley. In 1937, on his second American trip, noticed that the "sealing wax and string" at University of California at Berkeley had been replaced by engineering. Effect of influx of German refugee physicists. Rutherford's attitude toward a cyclotron at Cavendish because of Marcus Oliphant's low voltage ion source. Need for higher voltages and benefaction of a quarter million pounds from Lord Austin. Rutherford's complete control of Laboratory, the changing role of Cavendish over time; impact of the discovery of fission in England; effects of the war on nuclear physics and the differences in postwar planning and funding of research. Also prominently mentioned are: Niels Henrik David Bohr, James Chadwick, Ralph Howard Fowler, Petr Kapitsa; Cavendish Laboratory, European Council of Nuclear Research, Dept. of Physics at University of California Berkeley, and University of Oxford.
Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.
Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.
Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.
Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.