Search results
Displaying 1 - 4 of total 4 results:
This interview is concerned primarily with two periods in the life of Libby (1927-1940 and 1945-1954). After briefly discussing his early life and education, considerable attention is focused upon Libby's undergraduate, graduate, and post-graduate years (1927-1940) at the University of California, Berkeley. Major topics included are: growth of Berkeley science; Gilbert Lewis, Wendell Latimer and Ernest Lawrence; Libby's development of low-level counters; radiochemistry and discovery of isotopes; cross-disciplinary collaboration; Libby's interest in carbon-14; association with Samuel Ruben and Martin Kamen; hot atom chemistry and nuclear isomerism; Libby's experiences at Princeton during 1940-1941 (hot atom chemistry, development of heterogeneous catalysis and research on tritium) and his work on the chemistry of the diffusion process during WWII at Columbia University (Manhattan Project) are mentioned; the other major portion of the interview concentrates on Libby's development of the radiocarbon dating technique at the University of Chicago (1945-1954); special attention is devoted to: measurement of half-life of carbon-14; importance to Libby of Harold Urey; secrecy policy; collaboration with Aristid von Grosse, James Arnold and Ernest Anderson; improved counting technologies; first contacts with archaeologists; Viking Fund and cross-disciplinary collaboration; communicating ideas; Sunshine Project and fallout; AEC appointment; concluding remarks.
This interview is concerned primarily with two periods in the life of Libby (1927-1940 and 1945-1954). After briefly discussing his early life and education, considerable attention is focused upon Libby's undergraduate, graduate, and post-graduate years (1927-1940) at the University of California, Berkeley. Major topics included are: growth of Berkeley science; Gilbert Lewis, Wendell Latimer and Ernest Lawrence; Libby's development of low-level counters; radiochemistry and discovery of isotopes; cross-disciplinary collaboration; Libby's interest in carbon-14; association with Samuel Ruben and Martin Kamen; hot atom chemistry and nuclear isomerism; Libby's experiences at Princeton during 1940-1941 (hot atom chemistry, development of heterogeneous catalysis and research on tritium) and his work on the chemistry of the diffusion process during WWII at Columbia University (Manhattan Project) are mentioned; the other major portion of the interview concentrates on Libby's development of the radiocarbon dating technique at the University of Chicago (1945-1954); special attention is devoted to: measurement of half-life of carbon-14; importance to Libby of Harold Urey; secrecy policy; collaboration with Aristid von Grosse, James Arnold and Ernest Anderson; improved counting technologies; first contacts with archaeologists; Viking Fund and cross-disciplinary collaboration; communicating ideas; Sunshine Project and fallout; AEC appointment; concluding remarks.
Early life in New Bedford, MA; father’s informal education as chemist and engineer; difficulties in early education. Undergraduate at Brown University, 1916-1920; interest in mathematics. Graduate work at MIT, 1920-1922; physics exams; Edwin B. Wilson’s tenure at MIT, state of physics teaching there, limitations of the department. Work with Niels Bohr in Copenhagen, 1922, leading to self-consistent field idea applied to alkali atoms; Bohr as a person, teacher, and philosopher. Continuation of Copenhagen work for Ph.D. thesis in Department of Mathematics at MIT. Work atmosphere at Yale University, 1923-1930; reluctance about the new wave mechanics, later work in this area. Recollections of Ernest O. Lawrence at Yale, rivalry between Leigh Page and William P. G. Swann; Swann’s interest in spiritualism, Page’s emission theory of electromagnetism. Development of interest in philosophy and methodology of science; associations with Percy W. Bridgman, Norton Wiener, J. D. Tamarkin. Foundation of Physics course at Yale. Teaching at Brown from 1930; Carl Ba.rus; development of Mathematics Department under R. G. D. Richardson; Lindsay’s supervision methods. Chairman of Brown Physics Department, problems setting up undergraduate degree program post-World War II; supervision of teaching. Research during World War II. Connection with the Acoustical Society, 1936, member of executive council; associate editor of ASA Journal, 1950, editor-in-chief 1957, interest in publication of archival technical material. Great figures in the Acoustical Society; growth of and comparison between Acoustical and Physical Societies; role of the American Institute of Physics.
Early life in New Bedford, MA; father’s informal education as chemist and engineer; difficulties in early education. Undergraduate at Brown University, 1916-1920; interest in mathematics. Graduate work at MIT, 1920-1922; physics exams; Edwin B. Wilson’s tenure at MIT, state of physics teaching there, limitations of the department. Work with Niels Bohr in Copenhagen, 1922, leading to self-consistent field idea applied to alkali atoms; Bohr as a person, teacher, and philosopher. Continuation of Copenhagen work for Ph.D. thesis in Department of Mathematics at MIT. Work atmosphere at Yale University, 1923-1930; reluctance about the new wave mechanics, later work in this area. Recollections of Ernest O. Lawrence at Yale, rivalry between Leigh Page and William P. G. Swann; Swann’s interest in spiritualism, Page’s emission theory of electromagnetism. Development of interest in philosophy and methodology of science; associations with Percy W. Bridgman, Norton Wiener, J. D. Tamarkin. Foundation of Physics course at Yale. Teaching at Brown from 1930; Carl Ba.rus; development of Mathematics Department under R. G. D. Richardson; Lindsay’s supervision methods. Chairman of Brown Physics Department, problems setting up undergraduate degree program post-World War II; supervision of teaching. Research during World War II. Connection with the Acoustical Society, 1936, member of executive council; associate editor of ASA Journal, 1950, editor-in-chief 1957, interest in publication of archival technical material. Great figures in the Acoustical Society; growth of and comparison between Acoustical and Physical Societies; role of the American Institute of Physics.