Search results
Displaying 1 - 5 of total 5 results:
In this interview, Geoffrey Burbidge discusses his life and career. Topics discussed include: his family and childhood; Bristol University; Nevill Mott; University College, London; Harrie Massey; David Robert Bates; theoretical physics seminars at Cambridge University; Richard Feymnan; Freeman Dyson; Dick Dalitz; Abdus Salam; Nicholas Kemmer; becoming interested in astronomy and astrophysics via Margaret Burbidge; Royal Astronomical Society; Clive Gregory; research into stellar parallax, stellar atmospheres; Herbert Dingle; Auger effect; Otto Struve; Harvard University; Bart Bok; Donald Menzel; Harlow Shapley; Yerkes Observatory; development of radio astronomy; I. I. Rabi and big bang skepticism; Chandrasekhar; Gerard Kuiper; Enrico Fermi; Cavendish Laboratory, Martin Ryle; nucleosynthesis; Kapitza Club; Willie Fowler; Fred Hoyle; stellar evolution; steady state cosmology; red shift; Erwin Finlay-Freundlich; Max Born; Mount Wilson Observatory; Allan Sandage; Milt Humason; Ira Bowen; status at women at Hale observatories and at the California Institute of Technology (CalTech); Edwin Hubble; Walter Baade; synchrotron radiation; Rudolph Minkowski; Californium and supernovae; Halton Arp; Hans Suess; Vera Rubin's work on anisotropy; quasars; galaxy formation.
Family background and early education; undergraduate studies in engineering at University of Michigan, faculty who influenced him; doctoral thesis at University of Michigan with Richard Crane on the g-2 experiment. Postdoctoral instructor; decision to work with Robert Dicke on gravitation at Princeton; funding in the Princeton Department, faculty, the ongoing NSF grant for Gravity, Relativity and Cosmology research. The lunar ranging experiment; assembling the team, background observations with balloons and COBE, construction for the 1969 Apollo flight. Studies in black-body radiation generated by Dicke, 1964; Wilkinson joins project with Peter Roll and James Peebles; building microwave apparatus, need for helium load, mapping the horn and measuring insertion loss. Robert Wilson and Arno Penzias at Bell Laboratories publish background radiation papers ahead of Dicke’s team, other researchers on the topic: Ralph Alpher, Robert Herman, James Follin, George Gamow, Joseph Weber. The American Physical Society (APS) meeting in 1966, measurements from Dicke’s group confirms Penzias/Wilson support of big bang theory. Further discussion on lunar ranging, measuring gravitation, the Nordvedt effect, optical measurements with Roger Dube and Bill Wickes, Steve Boughn and Peter Saulson on infrared background measurements. Paper with Mark Davis (1974). Formation of young galaxies, ongoing DIRBE (Diffuse Infrared Background Explorer) on COBE (Cosmic Background Exteriment) designed to measure background radiation over wide spectral range CO measurements at high galactic latitude looking for dust clouds. CCD photometry by Ed Loh, find scale anistropy on NRAO maser with Juan Uson, large scale anistropy measurements. Discovery of dipole anistropy by Paul Henry and later confirmations, disconfirmation of quadropole effect. Plans for future work: g-2 experiments, measuring g and creating new infrared detector, search for low mass stars. Effects of being a physicist on his family life, hobbies, upcoming second marriage.
In this interview Joseph Silk discusses topics such as: influence of Boy Scouts in childhood; family background; high school education; early interest in mathematics; coaching by high school math teacher; math at Cambridge; influence of Dennis Sciama at Cambridge and decision to go into astronomy; fellow students at Harvard; character of Harvard astronomy department in the 1960s; David Layzer's opposition to the standard big bang model; first interest in the problem of galaxy formation and the union of hydrodynamics, radiative transfer, and cosmology at Woods Hole in summer of 1967; influence of Richard Michie; thesis work on interaction of matter and radiation in galaxy formation; ignorance about the first second of the universe and the origin of the primordial fluctuations; history of the growing confidence in the meaning of the cosmic background radiation; the philosophy of simplicity in physics; the role of the cosmic background rdiation in testing theories of galaxy formation; history of the horizon problem and Silk's attitude toward that problem; change in attitude as a result of the inflationary universe model; attitude toward the inflationary universe model; reasons why the model has become so popular; first introduction to and attitude toward the flatness problem; Silk's acceptance of appropriate initial conditions as explanations of cosmological problems; attitude toward the missing mass required by inflation; reaction to de Lapparent, Geller, and Huchra's work on inhomogeneities; ignorance of nature of inhomogeneities on scales betwen 20 megaparsecs and 2000 megaparsecs; worry over large-scale velocity fields and reported anistropies in the cosmic background radiation as challenges to standard models for the origin of fluctuations; importance of reported distortions in the spectrum of the cosmic background radiation (CBR) and difficulties of explaining such distortions if true; outstanding problems in cosmology: distortions in the CBR, galaxy formation, suitable initial conditions, satisfactory theory of inflation, value of omega; importance of metaphors and good verbal descriptions in scientific communication; interplay of theory and observation in cosmology; ideal design of the universe; question of whether the universe has a point.
Developments in quantum mechanics, familiarity with the old quantum theory; Edwin C. Kemble is his thesis advisor at Harvard University, 1920-1922. Comparison of Harvard and University of Wisconsin; work and collaboration with graduate students and postdocs at. Wisconsin. Research work in Europe, 1926 and after; high-frequency paramagnetism. Paramagnetic anisotropy. Teaching at University of Michigan, Stanford University, Columbia University, and Harvard University; 1930 Solvay Congress; discussions of research work and papers, 1920s-1940s; awareness of the development of solid state physics; Linus Pauling and the ligand field theory; teaching responsibilities. War work at the Radio Research Laboratory at Harvard as head of the Theory Group; the many duties on advising and reviewing committees during World War II. Chairman of Physics Department at Harvard, 1945-1949; chairmanships and other official functions during the 1950s, excitement of the renewed interest in ligand field theory (chemists); comments on personal interests.
Developments in quantum mechanics, familiarity with the old quantum theory; Edwin C. Kemble is his thesis advisor at Harvard University, 1920-1922. Comparison of Harvard and University of Wisconsin; work and collaboration with graduate students and postdocs at. Wisconsin. Research work in Europe, 1926 and after; high-frequency paramagnetism. Paramagnetic anisotropy. Teaching at University of Michigan, Stanford University, Columbia University, and Harvard University; 1930 Solvay Congress; discussions of research work and papers, 1920s-1940s; awareness of the development of solid state physics; Linus Pauling and the ligand field theory; teaching responsibilities. War work at the Radio Research Laboratory at Harvard as head of the Theory Group; the many duties on advising and reviewing committees during World War II. Chairman of Physics Department at Harvard, 1945-1949; chairmanships and other official functions during the 1950s, excitement of the renewed interest in ligand field theory (chemists); comments on personal interests.