Search results
Displaying 1 - 10 of total 12 results:
Family background; freshman course instructors at the University of Chicago; war-time training program; living next door to Manhattan Project people; Radio Research Laboratory at Harvard University; work on jamming tools (radar counter-measures) and antennas; work and graduate study at the Institute for the Study of Metals the University of Chicago (with Clarence Zener); work with Andy Lawson; E. R. Piore and the Office of Naval Research; early history of the Institute for the Study of Metals; Cyril Stanley Smith; Zener’s course in solid state physics; Lazarus’ doctoral dissertation; University of Illinois at Urbana, fall 1949; work on diffusion in metals; interaction with Frederick Seitz and Japanese physicists. Also prominently mentioned are: Chuck Barrett, Enrico Fermi, Doug Fitchen, James Franck, Bill Fretter, George Friedel, Lou Girifalco, Marvin Leonard Goldberger, Mel Gottlieb, Pete Harvey, Gerald Holton, Hillard B. Huntington, Peter Gerald Kruger, Ting Tsui Kuh, Harvey Brace Lemon, Earl Long, Francis Wheeler Loomis, Robert Joseph Maurer, Douglas McArthur, Louis Ridenour, Win Salzberg, Larry Slitkin, Don Stevens, Leo Szilard, Carl Tomizuka, Chen Ning Yang; Argonne National Laboratory, Columbia University, General Electric Company, Harvard University, Massachusetts Institute of Technology, United States Atomic Energy Commission.
The interview ranges from Inglis’ youth and family origins to his current (1977) activities. Topics include his student days (Amherst College 1924-28, Ann Arbor 1928-31), contact with European physicists and rising Nazism (1932-13), the physics departments at Ohio State, University of Pittsburgh, Princeton, and Johns Hopkins in the 1930’s, and the last of these in the 1940’s; atomic spectroscopy, ferromagnetism, uses of the vector model, shift from atomic to nuclear spectroscopy, the Thomas precession and spin-orbit coupling in nuclei, shell and droplet models for nuclei, intermediate coupling model for light nuclei, the earth’s magnetic field, wind-dynamos and nuclear reactors; Los Alamos during World War II, Argonne Laboratory in the 1950’s and 60’s; expression of social concern, especially in relation to the nuclear arms race, in the 1950’s through the Bulletin of the Atomic Scientists, the political victimization of Donald Flanders, the Federation of American Scientists, congressional testimony concerning Lewis Strauss’ (nominee for Sec. of Commerce) experiences at Pugwash Conferences, obstacles to slowing or reversing the arms race.
The interview ranges from Inglis’ youth and family origins to his current (1977) activities. Topics include his student days (Amherst College 1924-28, Ann Arbor 1928-31), contact with European physicists and rising Nazism (1932-13), the physics departments at Ohio State, University of Pittsburgh, Princeton, and Johns Hopkins in the 1930’s, and the last of these in the 1940’s; atomic spectroscopy, ferromagnetism, uses of the vector model, shift from atomic to nuclear spectroscopy, the Thomas precession and spin-orbit coupling in nuclei, shell and droplet models for nuclei, intermediate coupling model for light nuclei, the earth’s magnetic field, wind-dynamos and nuclear reactors; Los Alamos during World War II, Argonne Laboratory in the 1950’s and 60’s; expression of social concern, especially in relation to the nuclear arms race, in the 1950’s through the Bulletin of the Atomic Scientists, the political victimization of Donald Flanders, the Federation of American Scientists, congressional testimony concerning Lewis Strauss’ (nominee for Sec. of Commerce) experiences at Pugwash Conferences, obstacles to slowing or reversing the arms race.
Role in establishment of American institute of Physics (AIP) in 1931; relation between American Association of Physics Teachers (AAPT) and American Physical Society (APS); views of Floyd Richtmyer and Karl K. Darrow. Physics in the 1930s, effects of the Depression. The Oersted Medal, 1934. Secondary school teachers and AAPT; fear within AIP of industrial domination. World’s Fair of 1933. Robert W. Wood, chairman of governing board of the AIP, 1941-1948. War work: chief of Physics Special Devices Div. of National Defense Research Council (NDRC). War’s effect on status of teachers. Postwar planning in physics; National Science Foundation, AEC, Bush Report. Chairman of Board at Argonne National Laboratories (ANL); structure of ANL. AIP-AAPT and large-scale fellowship support. Also prominently mentioned are: Henry Askew Barton, W. W. Buffum, Winston Churchill, Karl Taylor Compton, Morris Leeds, Alfred Loomis, Floyd K. Richtmyer, Robert Williams Wood; American Association for the Advancement of Science, Bausch and Lomb Co., Central Scientific Company, Century of Progress international Exposition (1933-1934), Commission on College Teaching, National Research Council (U.S.), Optical Society of America, Research and Technological institute, Review of Scientific instruments, Scientific Apparatus Makers of America, United States Air Force Office of Scientific Research, United States Congress, United States Congress Dadario Committee, United States Congress House Sub-Committee on Appropriations, United States Department of Health, Education and Welfare, United States Office of Scientific Research and Development National Defense Research Committee, and University of Chicago.
Family background. Born 1913; school and university in Rochester, New York. Undergraduate chemistry major; Ph.D. in physics (Lee DuBridge), 1939; Massachusetts Institute of Technology as postdoc (Arthur von Hippel). War work at University of Pennsylvania, silicon diodes; with Frederick Seitz at Carnegie Institute of Technology, 1942-1944, working on Dark Track tube subcontracting, in conjunction with MIT Radiation Laboratory. University of Chicago in 1944 to join Eugene Wigner's group in the Manhattan District; Leo Szilard's graphite calculation and Maurer's experiment; Argonne National Laboratory visit in 1949. Discussions of published works on cuprous iodine, 1941; electrical properties of semiconductors; photoelectric effects, silver chloride and silver bromide. Head of the Office of Naval Research, Physics, 1948. From 1949, at University of Illinois, building solid state physics group.
Family background. Born 1913; school and university in Rochester, New York. Undergraduate chemistry major; Ph.D. in physics (Lee DuBridge), 1939; Massachusetts Institute of Technology as postdoc (Arthur von Hippel). War work at University of Pennsylvania, silicon diodes; with Frederick Seitz at Carnegie Institute of Technology, 1942-1944, working on Dark Track tube subcontracting, in conjunction with MIT Radiation Laboratory. University of Chicago in 1944 to join Eugene Wigner's group in the Manhattan District; Leo Szilard's graphite calculation and Maurer's experiment; Argonne National Laboratory visit in 1949. Discussions of published works on cuprous iodine, 1941; electrical properties of semiconductors; photoelectric effects, silver chloride and silver bromide. Head of the Office of Naval Research, Physics, 1948. From 1949, at University of Illinois, building solid state physics group.
Family background and early education, motivation and funding for college; math program at Stanford University, from 1928; physics studies at California Institute of Technology; graduate study at Princeton University, beginning 1932, atmosphere of the department, faculty (Lou Turner, Eugene Wigner, John Von Neumann); colloquia, Edward Condon. Development of applications of group theory, work in solid state with Linus Pauling, Hillard B. Huntington, Albert Sherman, William Hansen, William Shockley, Robert R. Brattain, R. Bowling Barnes. Betty Seitz; work with her on the text Modern Theory of Solids. Sodium band theory work with Wigner. To University of Rochester with Lee DuBridge. Centers for solid state work including University of Michigan, University of Wisconsin, Harvard University (John Van Vleck). Work at General Electric, 1935-1936, studies of luminescence; atmosphere in industrial labs following Depression, contacts with other industrial labs; association with DuPont. State of physics in 1930s, trends at solid state centers. Work on crystal defects, pigments, leading to work on germanium and, particularly, silicon; history of study of semiconductors and influences on its development such as World War II; work on dislocations and creep; work at Westinghouse Company. World War II work with Frankford Arsenal, Dahlgren Proving Ground, and Massachusetts Institute of Technology Radiation Laboratory; University of Pennsylvania, 1938; Carnegie-Mellon University, 1942, on dark trace tubes, leading to color center papers; University of Chicago work on reactors and neutron diffraction, 1943; Oak Ridge National Laboratory with Wigner; Argonne National Laboratory, solid state group. With Field Intelligence Agency Technical (FIAT), visit to Gottingen, 1945; state of solid state physics in international centers and U.S. Return to Carnegie- Mellon; diffusion theory. Pugwash Conferences; trips to Japan, 1953 and 1962, conditions and theoretical solid state work in postwar Japan. To University of Illinois, 1949 (Wheeler Loomis); John Bardeen's work, visits by Nevill Mott and Heinz Pick; McCarthyism. Development of Seitz's bibliography, changes in the study of solid state during the 1950s.
Family background and early education, motivation and funding for college; math program at Stanford University, from 1928; physics studies at California Institute of Technology; graduate study at Princeton University, beginning 1932, atmosphere of the department, faculty (Lou Turner, Eugene Wigner, John Von Neumann); colloquia, Edward Condon. Development of applications of group theory, work in solid state with Linus Pauling, Hillard B. Huntington, Albert Sherman, William Hansen, William Shockley, Robert R. Brattain, R. Bowling Barnes. Betty Seitz; work with her on the text Modern Theory of Solids. Sodium band theory work with Wigner. To University of Rochester with Lee DuBridge. Centers for solid state work including University of Michigan, University of Wisconsin, Harvard University (John Van Vleck). Work at General Electric, 1935-1936, studies of luminescence; atmosphere in industrial labs following Depression, contacts with other industrial labs; association with DuPont. State of physics in 1930s, trends at solid state centers. Work on crystal defects, pigments, leading to work on germanium and, particularly, silicon; history of study of semiconductors and influences on its development such as World War II; work on dislocations and creep; work at Westinghouse Company. World War II work with Frankford Arsenal, Dahlgren Proving Ground, and Massachusetts Institute of Technology Radiation Laboratory; University of Pennsylvania, 1938; Carnegie-Mellon University, 1942, on dark trace tubes, leading to color center papers; University of Chicago work on reactors and neutron diffraction, 1943; Oak Ridge National Laboratory with Wigner; Argonne National Laboratory, solid state group. With Field Intelligence Agency Technical (FIAT), visit to Gottingen, 1945; state of solid state physics in international centers and U.S. Return to Carnegie- Mellon; diffusion theory. Pugwash Conferences; trips to Japan, 1953 and 1962, conditions and theoretical solid state work in postwar Japan. To University of Illinois, 1949 (Wheeler Loomis); John Bardeen's work, visits by Nevill Mott and Heinz Pick; McCarthyism. Development of Seitz's bibliography, changes in the study of solid state during the 1950s.
Family background and early education, motivation and funding for college; math program at Stanford University, from 1928; physics studies at California Institute of Technology; graduate study at Princeton University, beginning 1932, atmosphere of the department, faculty (Lou Turner, Eugene Wigner, John Von Neumann); colloquia, Edward Condon. Development of applications of group theory, work in solid state with Linus Pauling, Hillard B. Huntington, Albert Sherman, William Hansen, William Shockley, Robert R. Brattain, R. Bowling Barnes. Betty Seitz; work with her on the text Modern Theory of Solids. Sodium band theory work with Wigner. To University of Rochester with Lee DuBridge. Centers for solid state work including University of Michigan, University of Wisconsin, Harvard University (John Van Vleck). Work at General Electric, 1935-1936, studies of luminescence; atmosphere in industrial labs following Depression, contacts with other industrial labs; association with DuPont. State of physics in 1930s, trends at solid state centers. Work on crystal defects, pigments, leading to work on germanium and, particularly, silicon; history of study of semiconductors and influences on its development such as World War II; work on dislocations and creep; work at Westinghouse Company. World War II work with Frankford Arsenal, Dahlgren Proving Ground, and Massachusetts Institute of Technology Radiation Laboratory; University of Pennsylvania, 1938; Carnegie-Mellon University, 1942, on dark trace tubes, leading to color center papers; University of Chicago work on reactors and neutron diffraction, 1943; Oak Ridge National Laboratory with Wigner; Argonne National Laboratory, solid state group. With Field Intelligence Agency Technical (FIAT), visit to Gottingen, 1945; state of solid state physics in international centers and U.S. Return to Carnegie- Mellon; diffusion theory. Pugwash Conferences; trips to Japan, 1953 and 1962, conditions and theoretical solid state work in postwar Japan. To University of Illinois, 1949 (Wheeler Loomis); John Bardeen's work, visits by Nevill Mott and Heinz Pick; McCarthyism. Development of Seitz's bibliography, changes in the study of solid state during the 1950s.
Family background and early education, motivation and funding for college; math program at Stanford University, from 1928; physics studies at California Institute of Technology; graduate study at Princeton University, beginning 1932, atmosphere of the department, faculty (Lou Turner, Eugene Wigner, John Von Neumann); colloquia, Edward Condon. Development of applications of group theory, work in solid state with Linus Pauling, Hillard B. Huntington, Albert Sherman, William Hansen, William Shockley, Robert R. Brattain, R. Bowling Barnes. Betty Seitz; work with her on the text Modern Theory of Solids. Sodium band theory work with Wigner. To University of Rochester with Lee DuBridge. Centers for solid state work including University of Michigan, University of Wisconsin, Harvard University (John Van Vleck). Work at General Electric, 1935-1936, studies of luminescence; atmosphere in industrial labs following Depression, contacts with other industrial labs; association with DuPont. State of physics in 1930s, trends at solid state centers. Work on crystal defects, pigments, leading to work on germanium and, particularly, silicon; history of study of semiconductors and influences on its development such as World War II; work on dislocations and creep; work at Westinghouse Company. World War II work with Frankford Arsenal, Dahlgren Proving Ground, and Massachusetts Institute of Technology Radiation Laboratory; University of Pennsylvania, 1938; Carnegie-Mellon University, 1942, on dark trace tubes, leading to color center papers; University of Chicago work on reactors and neutron diffraction, 1943; Oak Ridge National Laboratory with Wigner; Argonne National Laboratory, solid state group. With Field Intelligence Agency Technical (FIAT), visit to Gottingen, 1945; state of solid state physics in international centers and U.S. Return to Carnegie- Mellon; diffusion theory. Pugwash Conferences; trips to Japan, 1953 and 1962, conditions and theoretical solid state work in postwar Japan. To University of Illinois, 1949 (Wheeler Loomis); John Bardeen's work, visits by Nevill Mott and Heinz Pick; McCarthyism. Development of Seitz's bibliography, changes in the study of solid state during the 1950s.