Search results
Displaying 1 - 10 of total 31 results:
Childhood; early interest in science (astronomy). Member of Astronomical Society of the Pacific, 1928. Special student at University of California at Berkeley, 1931, with Donald H. Menzel’s help. Regular student from 1932; comments on teachers and fellow students at Berkeley Student Observatory. Summer assistantship at Lick Observatory (Nicholas Mayall, Arthur B. Wyse), life at Lick Observatory. To Harvard University in 1937 for graduate studies; comparison between Harvard and Berkeley/Lick; teaching assistant at Radcliffe; 3-year membership in Harvard Society of Fellows, from 1939, of enormous importance for his development; works with Menzel and James G. Baker on the Theory of Physical Processes in Gaseous Nebulae, 1937; Analysis of the Atmospheres of the A-type Dwarfs Gamma Geminorum and Sirius based on data from Louis Berman; Jesse Greenstein. Comments on Harvard Summer Schools, Harlow Shapley’ s Square.” Volunteer teacher of elementary physics courses from 1942 at Harvard. Lawrence Radiation Laboratory, 1943-1945; work involved evaluation of the chemists and the Counting Group’s output from the electromagnetic separation process. Job offer from University of Indiana (Frank Edmunson) accepted due to cutback at Radiation Laboratory. Indiana years, 1945-1948, very productive (drafts for two astrophysics books); problems getting telescope time at Yerkes Observatory and unsatisfactory living conditions leads to acceptance of a promising tenured position at Michigan, a center with very active research due to Leo Goldberg; Robert McMath’s influence in the department; Keith Pierce and Aller’s work on infrared solar spectrum. Work performed at Mt. Wilson Observatory and Dominion Astrophysical Observatory. Goldberg resigns in 1959; comments on Aller’s decision to leave Michigan; discussions of funding; “over-head” (Aller’s talk at an AAS Meeting); comparison of Lick Observatory and Kitt Peak Observatory policies. Work at Mt. Stromio Observatory, Australia on sabbatical visits, 1960, 1968-1969, 1977-1978. Overview of opinions of the present state of astronomy. Comments on personal life, wife and children.
Education, decision to go into physics. Environment at the University of California, Berkeley in early 1950s, especially Charles Kittel's group; Charles Overhauser, et. al. At Berkeley as a graduate student after Charles Kittel's arrival, 1950, Kittel's development of the department (after the loyalty oath); focus on solid state physics, mainly resonance physics (ferromagnetic resonance, cyclotron resonance); University of Chicago and Berkeley relationship. Cohen at Chicago's Institute for the Study of Metals, from 1952. Discussion of the established Institutes for Basic Research: Institute for Nuclear Studies (Enrico Fermi); Institute for the Study of Metals (Cyril Smith, Andy Lawson, Stuart Rice); Low Temperature Laboratory (Earl Long). Contributions in resonance physics, semiconductor physics (Kittel, Cohen, Albert Overhauser, Carson D. Jeffries), superconducting alloys (Bernd T. Matthias and John Hulm); semi-metals, crystal structure, band structure; Fermi surface and Fermi theory of liquids; Clarence Zener anecdote; University of Chicago model of an interdisciplinary research institute for materials science; Lars Onsager's theory (1951) and its stimulating effect; Cohen's encounter with Brian Pippard; General Electric consultant (Walter A. Harrison, free electron model interpretation); James C. Phillip's critical point spectroscopy; Pippard and Eugene I. Blount "missed" the Fermi theory of liquids. Philosophical summarizing on declaring fields "closed," importance of young people in positions of responsibility. Also prominently mentioned are: Luis Alvarez, Chuck Barrett, Robert Dicke, Leopoldo Falicov, Arthur Kip, Lev Landau; and General Electric Company Research Laboratory.
In this interview, Edward Uhler Condon discusses topics such as: his family background; early education; influence of high school physics teacher, William Howell Williams, 1914-1918, and later teacher at University of California, Berkeley; interval as boy reporter. Undergraduate years at Berkeley, beginning in 1921 in chemistry department; Ph.D. in physics, 1926; association with Fred Weinberg. Discovery of Erwin Schrödinger's wave mechanics papers; International Education Board fellowship to study quantum mechanics at Göttingen, 1926. Work on Bell Systems technical journal for six months before accepting lectureship at Columbia University; teaching post at Princeton University; Condon and Philip Morse's Quantum Mechanics, result of Columbia and Princeton courses. Relations with University of California; role in persuading Ernest Lawrence to go to Berkeley from Yale University. Recollections of Michigan summer school. Work at Westinghouse on applications of nuclear physics to industry, including completion of Van de Graaff machine, 1937-1940; setting up Westinghouse research fellowships, 1938; Massachusetts Institute of Technology conference on applications of nuclear physics, October 1940; war work on microwave radar. J. Robert Oppenheimer asks Condon to come to Los Alamos Scientific Laboratory; tour of Los Alamos with Leslie Groves; reasons for leaving Los Alamos after a few weeks. Work as head of theoretical section of Lawrence's laboratory, August 1943-1945; British scientists. Evaluation of Westinghouse's four million-volt machine. Description of Nimitron, a physical computer, designed for 1939 World's Fair. Discussion of 1928 radioactivity. Reminiscences of Ronald Gurney's later career and his trouble with security. Discussion of postwar events, such as the Quebec Conference, McMahon Act, Moran's book about Winston Churchill. Peacetime development of atomic energy; establishment of the Senate's Special Committee on atomic energy. Directorship of the National Bureau of Standards (NBS), 1945-1951. Work on superconductivity; W. Emmanuel Maxwell and John Pelham. Accomplishments at NBS. Hearings in 1948 and 1952 before the Department of Commerce under Truman's loyalty program; Averell Harriman. Director of Research at Corning, 1951. House Un-American Activities Committee hearing, 1954; J. R. Oppenheimer and Bernard Peters; reopening of clearances, loss of Corning position; becomes Corning consultant. Head of Washington University physics department, 1956-1963; Oberlin College, 1962; interest in modernizing teaching; Joint Institute for Laboratory Astrophysics (JILA), from 1963; editor of Reviews of Modern Physics, 1957-1968; establishment of the National Accelerator Laboratory (Chicago); the UFO story. Comments on his most satisfying and his least satisfying work. Also prominently mentioned are: Raymond T. Birge and Henry Wallace.
In this interview, Edward Uhler Condon discusses topics such as: his family background; early education; influence of high school physics teacher, William Howell Williams, 1914-1918, and later teacher at University of California, Berkeley; interval as boy reporter. Undergraduate years at Berkeley, beginning in 1921 in chemistry department; Ph.D. in physics, 1926; association with Fred Weinberg. Discovery of Erwin Schrödinger's wave mechanics papers; International Education Board fellowship to study quantum mechanics at Göttingen, 1926. Work on Bell Systems technical journal for six months before accepting lectureship at Columbia University; teaching post at Princeton University; Condon and Philip Morse's Quantum Mechanics, result of Columbia and Princeton courses. Relations with University of California; role in persuading Ernest Lawrence to go to Berkeley from Yale University. Recollections of Michigan summer school. Work at Westinghouse on applications of nuclear physics to industry, including completion of Van de Graaff machine, 1937-1940; setting up Westinghouse research fellowships, 1938; Massachusetts Institute of Technology conference on applications of nuclear physics, October 1940; war work on microwave radar. J. Robert Oppenheimer asks Condon to come to Los Alamos Scientific Laboratory; tour of Los Alamos with Leslie Groves; reasons for leaving Los Alamos after a few weeks. Work as head of theoretical section of Lawrence's laboratory, August 1943-1945; British scientists. Evaluation of Westinghouse's four million-volt machine. Description of Nimitron, a physical computer, designed for 1939 World's Fair. Discussion of 1928 radioactivity. Reminiscences of Ronald Gurney's later career and his trouble with security. Discussion of postwar events, such as the Quebec Conference, McMahon Act, Moran's book about Winston Churchill. Peacetime development of atomic energy; establishment of the Senate's Special Committee on atomic energy. Directorship of the National Bureau of Standards (NBS), 1945-1951. Work on superconductivity; W. Emmanuel Maxwell and John Pelham. Accomplishments at NBS. Hearings in 1948 and 1952 before the Department of Commerce under Truman's loyalty program; Averell Harriman. Director of Research at Corning, 1951. House Un-American Activities Committee hearing, 1954; J. R. Oppenheimer and Bernard Peters; reopening of clearances, loss of Corning position; becomes Corning consultant. Head of Washington University physics department, 1956-1963; Oberlin College, 1962; interest in modernizing teaching; Joint Institute for Laboratory Astrophysics (JILA), from 1963; editor of Reviews of Modern Physics, 1957-1968; establishment of the National Accelerator Laboratory (Chicago); the UFO story. Comments on his most satisfying and his least satisfying work. Also prominently mentioned are: Raymond T. Birge and Henry Wallace.
In this interview, Edward Uhler Condon discusses topics such as: his family background; early education; influence of high school physics teacher, William Howell Williams, 1914-1918, and later teacher at University of California, Berkeley; interval as boy reporter. Undergraduate years at Berkeley, beginning in 1921 in chemistry department; Ph.D. in physics, 1926; association with Fred Weinberg. Discovery of Erwin Schrödinger's wave mechanics papers; International Education Board fellowship to study quantum mechanics at Göttingen, 1926. Work on Bell Systems technical journal for six months before accepting lectureship at Columbia University; teaching post at Princeton University; Condon and Philip Morse's Quantum Mechanics, result of Columbia and Princeton courses. Relations with University of California; role in persuading Ernest Lawrence to go to Berkeley from Yale University. Recollections of Michigan summer school. Work at Westinghouse on applications of nuclear physics to industry, including completion of Van de Graaff machine, 1937-1940; setting up Westinghouse research fellowships, 1938; Massachusetts Institute of Technology conference on applications of nuclear physics, October 1940; war work on microwave radar. J. Robert Oppenheimer asks Condon to come to Los Alamos Scientific Laboratory; tour of Los Alamos with Leslie Groves; reasons for leaving Los Alamos after a few weeks. Work as head of theoretical section of Lawrence's laboratory, August 1943-1945; British scientists. Evaluation of Westinghouse's four million-volt machine. Description of Nimitron, a physical computer, designed for 1939 World's Fair. Discussion of 1928 radioactivity. Reminiscences of Ronald Gurney's later career and his trouble with security. Discussion of postwar events, such as the Quebec Conference, McMahon Act, Moran's book about Winston Churchill. Peacetime development of atomic energy; establishment of the Senate's Special Committee on atomic energy. Directorship of the National Bureau of Standards (NBS), 1945-1951. Work on superconductivity; W. Emmanuel Maxwell and John Pelham. Accomplishments at NBS. Hearings in 1948 and 1952 before the Department of Commerce under Truman's loyalty program; Averell Harriman. Director of Research at Corning, 1951. House Un-American Activities Committee hearing, 1954; J. R. Oppenheimer and Bernard Peters; reopening of clearances, loss of Corning position; becomes Corning consultant. Head of Washington University physics department, 1956-1963; Oberlin College, 1962; interest in modernizing teaching; Joint Institute for Laboratory Astrophysics (JILA), from 1963; editor of Reviews of Modern Physics, 1957-1968; establishment of the National Accelerator Laboratory (Chicago); the UFO story. Comments on his most satisfying and his least satisfying work. Also prominently mentioned are: Raymond T. Birge and Henry Wallace.
Family background; grows up in California; early interest in electronics. Undergraduate and graduate studies at Caltech. Strong interest in history of science as undergraduate. Ph.D. in physics, 1932. University of California at Berkeley, 1932-1934. MIT from 1934; founder of the Radioactivity Center. Starts first course designated "nuclear physics," January 1935. Strong interest in study of radium poisoning; radium tolerance in humans, cancer research. World War II work, postwar work; establishment of Laboratory for Nuclear Science and Engineering. Markle Foundation supplies funds for the Radioactivity Center's Cyclotron; the 1940 Conference on Applied Nuclear Physics (sponsored by the American Institute of Physics and MIT); World War II work at the Radioactivity Center at MIT; radium dial paint studies; radium and plutonium safety regulations (Glenn Seaborg); work relations with the Manhattan Project; the MAMI (marked mine) project reveals indication of German plutonium project. Also prominently mentioned are: Carl David Anderson, Joe Aub, Joe Boyce, Vannevar Bush, Evan Byers, John Cockcroft, Robert Colenko, Arthur Holly Compton, Karl Taylor Compton, Enrico Fermi, Horace Ford, Ralph Howard Fowler, George Gamow, Newell Gingrich, Clark Goodman, Leslie Richard Groves, George Harrison, Hobart, Elmer Hutchisson, Ray Keating, Arthur Kip, Pinkie Klein, Rudolf Ladenburg, Charles Christian Lauritsen, Thomas Lauritsen, Ernest Orlando Lawrence, Gilbert Newton Lewis, Willard Frank Libby, Milton Stanley Livingston, Leonard Benedict Loeb, Sam Lynd, Edwin Mattison McMillan, Robert Andrews Millikan, J. Robert Oppenheimer, Elmer Robinson, Ernest Rutherford, John Clarke Slater, Sorensen, Robert Jamison Van de Graaff, Ernest Thomas Sinton Walton, Martin Wittenberg, Jerrold Reinach Zacharias; American Institute of Physics; American Cancer Society, Bausch and Lomb Co., National Research Council, Radiation Standards Committee, United States Federal Cancer Commission, United States Food and Drug Administration, United States National Bureau of Standards, United States Navy, University of Rochester, University of Utah Salt Lake City Project, Wesleyan University, World War I, and World War II.
Family background; grows up in California; early interest in electronics. Undergraduate and graduate studies at Caltech. Strong interest in history of science as undergraduate. Ph.D. in physics, 1932. University of California at Berkeley, 1932-1934. MIT from 1934; founder of the Radioactivity Center. Starts first course designated "nuclear physics," January 1935. Strong interest in study of radium poisoning; radium tolerance in humans, cancer research. World War II work, postwar work; establishment of Laboratory for Nuclear Science and Engineering. Markle Foundation supplies funds for the Radioactivity Center's Cyclotron; the 1940 Conference on Applied Nuclear Physics (sponsored by the American Institute of Physics and MIT); World War II work at the Radioactivity Center at MIT; radium dial paint studies; radium and plutonium safety regulations (Glenn Seaborg); work relations with the Manhattan Project; the MAMI (marked mine) project reveals indication of German plutonium project. Also prominently mentioned are: Carl David Anderson, Joe Aub, Joe Boyce, Vannevar Bush, Evan Byers, John Cockcroft, Robert Colenko, Arthur Holly Compton, Karl Taylor Compton, Enrico Fermi, Horace Ford, Ralph Howard Fowler, George Gamow, Newell Gingrich, Clark Goodman, Leslie Richard Groves, George Harrison, Hobart, Elmer Hutchisson, Ray Keating, Arthur Kip, Pinkie Klein, Rudolf Ladenburg, Charles Christian Lauritsen, Thomas Lauritsen, Ernest Orlando Lawrence, Gilbert Newton Lewis, Willard Frank Libby, Milton Stanley Livingston, Leonard Benedict Loeb, Sam Lynd, Edwin Mattison McMillan, Robert Andrews Millikan, J. Robert Oppenheimer, Elmer Robinson, Ernest Rutherford, John Clarke Slater, Sorensen, Robert Jamison Van de Graaff, Ernest Thomas Sinton Walton, Martin Wittenberg, Jerrold Reinach Zacharias; American Institute of Physics; American Cancer Society, Bausch and Lomb Co., National Research Council, Radiation Standards Committee, United States Federal Cancer Commission, United States Food and Drug Administration, United States National Bureau of Standards, United States Navy, University of Rochester, University of Utah Salt Lake City Project, Wesleyan University, World War I, and World War II.
Family background; grows up in California; early interest in electronics. Undergraduate and graduate studies at Caltech. Strong interest in history of science as undergraduate. Ph.D. in physics, 1932. University of California at Berkeley, 1932-1934. MIT from 1934; founder of the Radioactivity Center. Starts first course designated "nuclear physics," January 1935. Strong interest in study of radium poisoning; radium tolerance in humans, cancer research. World War II work, postwar work; establishment of Laboratory for Nuclear Science and Engineering. Markle Foundation supplies funds for the Radioactivity Center's Cyclotron; the 1940 Conference on Applied Nuclear Physics (sponsored by the American Institute of Physics and MIT); World War II work at the Radioactivity Center at MIT; radium dial paint studies; radium and plutonium safety regulations (Glenn Seaborg); work relations with the Manhattan Project; the MAMI (marked mine) project reveals indication of German plutonium project. Also prominently mentioned are: Carl David Anderson, Joe Aub, Joe Boyce, Vannevar Bush, Evan Byers, John Cockcroft, Robert Colenko, Arthur Holly Compton, Karl Taylor Compton, Enrico Fermi, Horace Ford, Ralph Howard Fowler, George Gamow, Newell Gingrich, Clark Goodman, Leslie Richard Groves, George Harrison, Hobart, Elmer Hutchisson, Ray Keating, Arthur Kip, Pinkie Klein, Rudolf Ladenburg, Charles Christian Lauritsen, Thomas Lauritsen, Ernest Orlando Lawrence, Gilbert Newton Lewis, Willard Frank Libby, Milton Stanley Livingston, Leonard Benedict Loeb, Sam Lynd, Edwin Mattison McMillan, Robert Andrews Millikan, J. Robert Oppenheimer, Elmer Robinson, Ernest Rutherford, John Clarke Slater, Sorensen, Robert Jamison Van de Graaff, Ernest Thomas Sinton Walton, Martin Wittenberg, Jerrold Reinach Zacharias; American Institute of Physics; American Cancer Society, Bausch and Lomb Co., National Research Council, Radiation Standards Committee, United States Federal Cancer Commission, United States Food and Drug Administration, United States National Bureau of Standards, United States Navy, University of Rochester, University of Utah Salt Lake City Project, Wesleyan University, World War I, and World War II.
This interview is concerned primarily with two periods in the life of Libby (1927-1940 and 1945-1954). After briefly discussing his early life and education, considerable attention is focused upon Libby's undergraduate, graduate, and post-graduate years (1927-1940) at the University of California, Berkeley. Major topics included are: growth of Berkeley science; Gilbert Lewis, Wendell Latimer and Ernest Lawrence; Libby's development of low-level counters; radiochemistry and discovery of isotopes; cross-disciplinary collaboration; Libby's interest in carbon-14; association with Samuel Ruben and Martin Kamen; hot atom chemistry and nuclear isomerism; Libby's experiences at Princeton during 1940-1941 (hot atom chemistry, development of heterogeneous catalysis and research on tritium) and his work on the chemistry of the diffusion process during WWII at Columbia University (Manhattan Project) are mentioned; the other major portion of the interview concentrates on Libby's development of the radiocarbon dating technique at the University of Chicago (1945-1954); special attention is devoted to: measurement of half-life of carbon-14; importance to Libby of Harold Urey; secrecy policy; collaboration with Aristid von Grosse, James Arnold and Ernest Anderson; improved counting technologies; first contacts with archaeologists; Viking Fund and cross-disciplinary collaboration; communicating ideas; Sunshine Project and fallout; AEC appointment; concluding remarks.
This interview is concerned primarily with two periods in the life of Libby (1927-1940 and 1945-1954). After briefly discussing his early life and education, considerable attention is focused upon Libby's undergraduate, graduate, and post-graduate years (1927-1940) at the University of California, Berkeley. Major topics included are: growth of Berkeley science; Gilbert Lewis, Wendell Latimer and Ernest Lawrence; Libby's development of low-level counters; radiochemistry and discovery of isotopes; cross-disciplinary collaboration; Libby's interest in carbon-14; association with Samuel Ruben and Martin Kamen; hot atom chemistry and nuclear isomerism; Libby's experiences at Princeton during 1940-1941 (hot atom chemistry, development of heterogeneous catalysis and research on tritium) and his work on the chemistry of the diffusion process during WWII at Columbia University (Manhattan Project) are mentioned; the other major portion of the interview concentrates on Libby's development of the radiocarbon dating technique at the University of Chicago (1945-1954); special attention is devoted to: measurement of half-life of carbon-14; importance to Libby of Harold Urey; secrecy policy; collaboration with Aristid von Grosse, James Arnold and Ernest Anderson; improved counting technologies; first contacts with archaeologists; Viking Fund and cross-disciplinary collaboration; communicating ideas; Sunshine Project and fallout; AEC appointment; concluding remarks.