# Search results

Displaying 1 - 10 of total **16** results:

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations.

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations.

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations.

From Herring's childhood and early education to his election as department head for the theoretical physics group at Bell Laboratories in 1956. Topics include graduate education at California Institute of Technology and Princeton University; Ph.D. in physics, 1937; early interest in astronomy, wartime work (hydrodynamics of explosions, underwater explosions). Much of the interview is devoted to brief discussions of individual publications; discussion of working environment at Bell Labs and experiences there from 1945 through the 1950s.

From Herring's childhood and early education to his election as department head for the theoretical physics group at Bell Laboratories in 1956. Topics include graduate education at California Institute of Technology and Princeton University; Ph.D. in physics, 1937; early interest in astronomy, wartime work (hydrodynamics of explosions, underwater explosions). Much of the interview is devoted to brief discussions of individual publications; discussion of working environment at Bell Labs and experiences there from 1945 through the 1950s.

From Herring's childhood and early education to his election as department head for the theoretical physics group at Bell Laboratories in 1956. Topics include graduate education at California Institute of Technology and Princeton University; Ph.D. in physics, 1937; early interest in astronomy, wartime work (hydrodynamics of explosions, underwater explosions). Much of the interview is devoted to brief discussions of individual publications; discussion of working environment at Bell Labs and experiences there from 1945 through the 1950s.

Covers his family background, upbringing, education at the University of Cambridge, and positions at University of Edinburgh, Imperial College, University of Belfast, Royal Holloway College and University of Sussex. The scientific topics discussed include: the development of Newtonian cosmology, the origins and development of steady-state cosmology; work on theories of the solar system.

Youth and early education; undergraduate years at Caltech, 1924-1929; influence of Arthur A. Noyes, Linus Pauling; graduate training and molecular beam work at Princeton University with Karl Compton, Edward U. Condon, Robert Van de Graaff, 1929-1932. National Research Council Fellow at University of California at Berkeley, 1932-1934; at Radiation Laboratory with Ernest O. Lawrence, J. Robert Oppenheimer; on Berkeley staff as teacher and working on cyclotrons, nuclear physics and radiochemistry, 1934-1940.