# Search results

Displaying 1 - 7 of total **7** results:

Extensive interview covering early life and family in New York and Maine; schooling and early interests in astronomy in New York City; observing Halley's comet in 1910; World War I and college years at Harvard University majoring in chemistry; medical degree from Cornell University; contacts with Henry Norris Russell and Harlow Shapley, and decision to move into astronomy; graduate work at Princeton; postdoctoral work and staff position at Mt.

Extensive interview covering early life and family in New York and Maine; schooling and early interests in astronomy in New York City; observing Halley's comet in 1910; World War I and college years at Harvard University majoring in chemistry; medical degree from Cornell University; contacts with Henry Norris Russell and Harlow Shapley, and decision to move into astronomy; graduate work at Princeton; postdoctoral work and staff position at Mt.

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations.

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations.

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations.