# Search results

Displaying 1 - 10 of total **17** results:

A thorough, reflective survey of the life and work of this theoretical astrophysicist. Early life and education in India, 1910-1930, and experiences at Trinity College, University of Cambridge, 1930-1937, with comments on Edward A. Milne and Arthur S. Eddington; debate with the latter over collapse of white dwarf stars. Move to U.S. in 1937, with comments on the situation at Harvard and Princeton Universities since the 1930s, and especially on Henry N. Russell, John Von Neumann, and Martin Schwarzschild.

A thorough, reflective survey of the life and work of this theoretical astrophysicist. Early life and education in India, 1910-1930, and experiences at Trinity College, University of Cambridge, 1930-1937, with comments on Edward A. Milne and Arthur S. Eddington; debate with the latter over collapse of white dwarf stars. Move to U.S. in 1937, with comments on the situation at Harvard and Princeton Universities since the 1930s, and especially on Henry N. Russell, John Von Neumann, and Martin Schwarzschild.

A thorough, reflective survey of the life and work of this theoretical astrophysicist. Early life and education in India, 1910-1930, and experiences at Trinity College, University of Cambridge, 1930-1937, with comments on Edward A. Milne and Arthur S. Eddington; debate with the latter over collapse of white dwarf stars. Move to U.S. in 1937, with comments on the situation at Harvard and Princeton Universities since the 1930s, and especially on Henry N. Russell, John Von Neumann, and Martin Schwarzschild.

Early career through 1939. Midwestern background; education at University of Texas, graduate work at Harvard University in theoretical physics under Edwin C. Kemble and John Van Vleck, 1929-1933; traveling fellowship (chiefly in Germany, 1932); positions at Harvard, University of Wisconsin, Princeton University, and New York University. The nature of theoretical nuclear physics work in the 1930s including nuclear models and Feenberg's work with Eugene P. Wigner on nuclear forces. Also prominently mentioned are: John Bardeen, Niels Henrik David Bohr, C. P. Boner, Gregory Breit, Walter M.

Early career through 1939. Midwestern background; education at University of Texas, graduate work at Harvard University in theoretical physics under Edwin C. Kemble and John Van Vleck, 1929-1933; traveling fellowship (chiefly in Germany, 1932); positions at Harvard, University of Wisconsin, Princeton University, and New York University. The nature of theoretical nuclear physics work in the 1930s including nuclear models and Feenberg's work with Eugene P. Wigner on nuclear forces. Also prominently mentioned are: John Bardeen, Niels Henrik David Bohr, C. P. Boner, Gregory Breit, Walter M.

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations.

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations.

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations.