In this interview, Peter McIntyre, Mitchell-Heep professor of experimental physics at Texas A&M University, and president of Accelerator Technology Corporation discusses his career and achievements as a professor. McIntyre recounts his childhood in Florida, and he explains his decision to pursue physics as an undergraduate at the University of Chicago and the influence of his longtime hero Enrico Fermi. He discusses his interests in experimental physics and he explains his decision to stay at Chicago for graduate school, where he worked with Val Teledgi, during a time he describes as the last days of bubble chamber physics. McIntyre conveys his intense opposition to the Vietnam War and the extreme lengths he took to avoid being drafted, and his dissertation work on the Ramsey resonance in zero field. He describes Telegdi’s encouragement for him to pursue postdoctoral research at CERN where he worked with Carlo Rubbia on the Intersecting Storage Rings project. He describes his time as an assistant professor at Harvard and his work at Fermilab, and the significance of his research which disproved Liouville’s theorem. McIntyre describes the series of events leading to his tenure at Texas A&M, and he explains how his hire fit into a larger plan to expand improve the physics program there. He discusses the completion of the Tevatron at Fermilab and the early hopes for the discovery of the mass scale of the Higgs boson, and he describes the origins of the SSC project in Texas and the mutually exclusive possibility that Congress would fund the International Space Station instead. McIntyre describes the key budgetary shortfalls that essentially doomed the SSC from the start, his efforts in Washington to keep the project viable, and the technical shortcomings stemming from miscommunication and stove-piping of expertise. He describes his involvement in the discovery of the top quark and the fundamental importance of the CDF, DZero, and ATLAS collaborations. McIntyre discusses his achievements as a teacher to undergraduates and a mentor to graduate students, and he assesses the current and future prospects for ongoing discovery in high energy physics. At the end of the interview, McIntyre describes his current wide-ranging research interests, including his efforts to improve the entire diagnostic infrastructure in screening and early detection of breast cancer.