2018 Physics Nobel Prize Resources from AIP Member Societies

AIP congratulates Arthur Ashkin, Gérard Mourou and Donna Strickland on their receipt of the Nobel Prize in physics "for groundbreaking inventions in the field of laser physics." Ashkin receives one-half of the prize "for the optical tweezers and their application to biological systems" and Mourou and Strickland share one-half "for their method of generating high-intensity, ultra-short optical pulses."

This page will be populated with the information and resources about the 2018 Prizes and the newly named laureates.

 

From The Optical Society (OSA)

Arthur Ashkin, Gérard Mourou, and Donna Strickland Awarded 2018 Nobel Prize in Physics
Laser Achievements Capture 2018 Nobel Physics Prize
OSA Publishing Congratulates the 2018 Nobel Prize Winners in Physics

Gérard Mourou

Compression of High Energy Pulses to the Sub-attosecond Regime: Route to Exawatt Laser Subatomic Physics
G.A. Mourou
High-Brightness Sources and Light-Driven Interactions, OSA technical Digest (online) (Optical Society of America, 2016), paper JS1A.2
https://www.osapublishing.org/abstract.cfm?uri=EUVXRAY-2016-JS1A.2

Extreme Light Infrastructure (ELI): Physics and Lasers at the ultra-intense frontier
G. Korn, S.V. Bulanov, J. Chambaret, D. Charambilidis, J. Collier, M. Dunne, K. Ertel, J. Hein, S. Karsch, F. Krausz, G. Mourou, P. Nickles, K. Osvay, B. Rus, W. Sandner, G. Tsakiris, and T. Tajima
Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThG2
https://www.osapublishing.org/abstract.cfm?uri=CLEO-2010-JThG2

EXTREME LIGHT PHYSICS (ELI)
G. Mourou
Conference on Lasers and Electro-Optics/Pacific Rim 2009, (Optical Society of America, 2009), paper PL_1
https://www.osapublishing.org/abstract.cfm?uri=CLEOPR-2009-PL_1

Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate.
V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick
Opt. Express 16, 2109-2114 (2008)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-16-3-2109

Relativistic Electron Jets from Laser-Solid Interactions at Kilohertz Repetition Rate
A.G. Mordovanakis, J. Easter, P. Masson-Laborde, B. Hou, G. Mourou, K. Krushelnick, W. Rozmus, and J. Nees
Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWB3
https://www.osapublishing.org/abstract.cfm?uri=QELS-2008-JWB3

An efficient Ni Kα X-ray source driven by a high energy fiber CPA system
K. -. Liao, A.G. Mordovanakis, B. Hou, G. Chang, G. Mourou, J. Nees, and A. Galvanauskas
CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper CP1_4
https://www.osapublishing.org/abstract.cfm?uri=CLEO_Europe-2007-CP1_4

Acceleration of Quasi-Monochromatic Electron Beams in Laser Wakefield to 300 MeV and Initiation of Photonuclear Reactions
A. Maksimchuk, S. Reed, N. Naumova, S. Bulanov, V. Chvykov, B. Hou, G. Kalintchenko, T. Matsuoka, P. Rousseau, G. Mourou, V. Yanovsky, J.R. Beene, D.R. Schultz, D.W. Stracener, and C.R. Vane
Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper JWC1
https://www.osapublishing.org/abstract.cfm?uri=CLEO-2006-JWC1

Relativistic Optics: A New Approach to Attosecond Physics
G. Mourou
Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper JWG1
https://www.osapublishing.org/abstract.cfm?uri=OPE-2006-JWG1

Development of Petawatt scale Ti:sapphire laser at 0.05 Hz repetition rate
V.P. Yanovsky, V.V. Chvykov, S. Bahk, G. Kalintchenko, K. Ta Phuoc, Y. Chang, and G. Mourou
Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CME6
https://www.osapublishing.org/abstract.cfm?uri=CLEO-2003-CME6

Production of a high-density and high-temperature plasma with an intense high-contrast subpicosecond laser
C. Y. Chien, J. S. Coe, G. Mourou, J. C. Kieffer, M. Chaker, Y. Beaudoin, O. Peyrusse, and D. Gilles
Opt. Lett. 18, 1535-1537 (1993)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-18-18-1535

Generation of 20-TW pulses of picosecond duration using chirped-pulse amplification in a Nd:glass power chain
C. Sauteret, D. Husson, G. Thiell, S. Seznec, S. Gary, A. Migus, and G. Mourou
Opt. Lett. 16, 238-240 (1991)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-16-4-238

Amplification of picosecond pulses to the terawatt level by chirped pulse amplification and compression
P. Maine, D. Strickland, M. Bouvier, and G. Mourou
Conference on Lasers and Electro-Optics, D. Auston, R. Jacobs, R. Bartolini, and P. Liao, eds., Vol. 14 of OSA Technical Digest (Optical Society of America, 1987), paper FR2
https://www.osapublishing.org/abstract.cfm?uri=CLEO-1987-FR2

Picosecond pulse amplification using pulse compression techniques
D. Strickland, P. Maine, M. Bouvier, S. Williamson, and G. Mourou
Conference on Lasers and Electro-Optics, G. Bjorklund, E. Hinkley, P. Moulton, and D. Pinnow, eds., OSA Technical Digest (Optical Society of America, 1986), paper THL1
https://www.osapublishing.org/abstract.cfm?uri=CLEO-1986-THL1

 

Donna Strickland

Dual-wavelength chirped-pulse amplification system
Z. Zhang, A. M. Deslauriers, and D. Strickland
Opt. Lett. 25, 581-583 (2000)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-25-8-581

Resistance of short pulses to self-focusing
D. Strickland and P.B. Corkum
J. Opt. Soc. Am. B 11, 492-497 (1994)
https://www.osapublishing.org/josab/abstract.cfm?uri=josab-11-3-492

Cr:LiSrAlF6 regenerative amplifier
M.D. Perry, D. Strickland, T. Ditmire, and F.G. Patterson
Opt. Lett. 17, 604-606 (1992)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-17-8-604

Laser ionization of noble gases by Coulomb-barrier suppression
S. Augst, D.D. Meyerhofer, D. Strickland, and S.L. Chin
J. Opt. Soc. Am. B 8, 858-867 (1991)
https://www.osapublishing.org/josab/abstract.cfm?uri=josab-8-4-858

Generation and nonlinear interactions of high power 20-fs pulses
D. Strickland and P.B. Corkum
International Quantum Electronics Conference, A. Owyoung, C. Shank, S. Chu, and E. Ippen, eds., Vol. 8 of OSA Technical Digest (Optical Society of America, 1990), paper QTHN1
https://www.osapublishing.org/abstract.cfm?uri=IQEC-1990-QTHN1

Picosecond pulse amplification using pulse compression techniques
D. Strickland, P. Maine, M. Bouvier, S. Williamson, and G. Mourou
Conference on Lasers and Electro-Optics, G. Bjorklund, E. Hinkley, P. Moulton, and D. Pinnow, eds., OSA Technical Digest (Optical Society of America, 1986), paper THL1
https://www.osapublishing.org/abstract.cfm?uri=CLEO-1986-THL1

 

Arthur Ashkin

Optical Trapping and Manipulation of Neutral Particles Using Lasers
A. Ashkin
Optics & Photonics News 10(5), 41- (1999)
https://www.osapublishing.org/opn/abstract.cfm?uri=opn-10-5-41

Observation of a single-beam gradient force optical trap for dielectric particles
A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and Steven Chu
Opt. Lett. 11, 288-290 (1986)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-11-5-288

Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data
Petr Chylek, V. Ramaswamy, A. Ashkin, and J.M. Dziedzic
Appl. Opt. 22, 2302-2307 (1983)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-22-15-2302

Stability of radiation-pressure particle traps: an optical Earnshaw theorem
A. Ashkin and J.P. Gordon
Opt. Lett. 8, 511-513 (1983)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-8-10-511

Continuous-wave self-focusing and self-trapping of light in artificial Kerr media
A. Ashkin, J.M. Dziedzic, and P.W. Smith
Opt. Lett. 7, 276-278 (1982)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-7-6-276

Cooling and trapping of atoms by resonance radiation pressure
A. Ashkin and J.P. Gordon
Opt. Lett. 4, 161-163 (1979)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-4-6-161

 

From the American Physical Society (APS)

Winners of 2018 Nobel Prize in Physics Announced

Acceleration and Trapping of Particles by Radiation Pressure​
A. Ashkin
Phys. Rev. Lett. 24, 156 – Published 26 January 1970
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.24.156

Trapping of Atoms by Resonance Radiation Pressure​
A. Ashkin
Phys. Rev. Lett. 40, 729 – Published 20 March 1978
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.40.729

Experimental Observation of Optically Trapped Atom​
Steven Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable
Phys. Rev. Lett. 57, 314 – Published 21 July 1986
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.57.314

 

From the American Association of Physics Teachers (AAPT)

Teaching the science behind the 2018 Nobel Prize in physics

Diffraction effects in mechanically chopped laser pulses
Samridhi Gambhir, and Mandip Singh
American Journal of Physics 86, 406 (2018)
https://doi.org/10.1119/1.5029821

Implementing digital holograms to create and measure complex-plane optical fields
Angela Dudley, Nombuso Majola, Naven Chetty, and Andrew Forbes
American Journal of Physics 84, 106 (2016)
https://doi.org/10.1119/1.4935354

A low-cost mirror mount control system for optics setups
Maithreyi Gopalakrishnan, and Markus Gühr
American Journal of Physics 83, 186 (2015)
https://doi.org/10.1119/1.4895343

Experimental method to characterize the retardance function of optical variable retarders
Juan M. López-Téllez, Neil C. Bruce, Jesús Delgado-Aguillón, Jesús Garduño-Mejía, and Maximino Avendaño-Alejo
American Journal of Physics 83, 143 (2015)
https://doi.org/10.1119/1.4896078

A graphical description of optical parametric generation of squeezed states of light
Jöran Bauchrowitz, Tobias Westphal, and Roman Schnabel
American Journal of Physics 81, 767 (2013)
https://doi.org/10.1119/1.4819195

Collimated blue light generation in rubidium vapor
Marcus B. Kienlen, Noah T. Holte, Hunter A. Dassonville, Andrew M. C. Dawes, Kurt D. Iversen, Ryan M. McLaughlin, and Shannon K. Mayer
American Journal of Physics 81, 442 (2013)
https://doi.org/10.1119/1.4795311

On the connection between image formation formulas in geometrical optics and beam transformation formulas in wave optics
Jean-François Bisson
American Journal of Physics 81, 844 (2013)
https://doi.org/10.1119/1.4819168

A low-cost spatial light modulator for use in undergraduate and graduate optics labs
Derek Huang, Henry Timmers, Adam Roberts, Niranjan Shivaram, and Arvinder S. Sandhu
American Journal of Physics 80, 211 (2012)
https://doi.org/10.1119/1.3666834

Absorption of a pulse by an optically dense medium: An argument for field quantization
P. R. Berman, and J.-L. Le Gouët
American Journal of Physics 79, 527 (2011)
https://doi.org/10.1119/1.3549235

Resource Letter NO-1: Nonlinear Optics
Elsa Garmire
American Journal of Physics 79, Issue 3, 245 (2011)
https://doi.org/10.1119/1.3534835

Optical tweezers for undergraduates: Theoretical analysis and experiments
M.S. Rocha
American Journal of Physics 77, 704 (2009)
https://doi.org/10.1119/1.3138698

Generation of Bessel beams using a 4-f spatial filtering system
Jeremy M. D. Kowalczyk, Stefanie N. Smith, and Eric B. Szarmes
American Journal of Physics 77, 229 (2009)
https://doi.org/10.1119/1.3033743

Physics of attosecond pulses produced via high harmonic generation
Katalin Varjú, Per Johnsson, Johan Mauritsson, Anne L’Huillier, and Rodrigo López-Martens
American Journal of Physics 77, 389 (2009)
https://doi.org/10.1119/1.3086028

Optical super-resolution with aperture-function engineering
E. Ramsay, K.A. Serrels, A.J. Waddie, M.R. Taghizadeh, and D.T. Reid
American Journal of Physics 76, 1002 (2008)
https://doi.org/10.1119/1.2957887

Development of a variable spectral-width, wavelength-tunable light source using a superluminescent diode with optical feedback
Fang-Wen Sheu, and Pei-Ling Luo
American Journal of Physics 76, 769 (2008)
https://doi.org/10.1119/1.2907774

Making optical vortices with computer-generated holograms
Alicia V. Carpentier, Humberto Michinel, José R. Salgueiro, and David Olivieri
American Journal of Physics 76, 916 (2008)
https://doi.org/10.1119/1.2955792  

On the fundamentals of optical scanning holography
Ting-Chung Poon
American Journal of Physics 76, 738 (2008)
https://doi.org/10.1119/1.2904472

Optical Doppler shift measurement using a rotating mirror
Luis Bernal, and Luis Bilbao
American Journal of Physics 75, 216 (2007)
https://doi.org/10.1119/1.2404958

Multiple-prism arrays in laser optics
F.J. Duarte
American Journal of Physics 68, 162 (2000)
https://doi.org/10.1119/1.19384

Modern optical signal processing experiments demonstrating intensity and pulse-width modulation using an acousto-optic modulator
Ting-Chung Poon, Mark D. McNeill, and Daniel J. Moore
American Journal of Physics 65, 917 (1997)
https://doi.org/10.1119/1.18683

Recombining rainbows
Kirk McDonald
The Physics Teacher 56, 196 (2018)
https://doi.org/10.1119/1.5028225

A Simple Experimental Setup to Clearly Show that Light Does Not Recombine After Passing Through Two Prisms
Rafael Garcia-Molina, Alejandro del Mazo, and Santiago Velasco
The Physics Teacher 56, 14 (2017)
https://doi.org/10.1119/1.5018680

The Smallest Tweezers in the World
Alexandre Lewalle
The Physics Teacher 46, 467 (2008)
https://doi.org/10.1119/1.2999061

 

2018 Physics Nobel Prize Resources →