Nobel Prize 2023

Nobel Prize table setting artwork

Tuesday, Oct. 3, the Nobel Prize committee announced the 2023 physics prize, recognizing Pierre Agostini, Ferenc Krausz, and Anne L'Huillier "for experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter."

Wednesday, Oct. 4, the Nobel Prize committee announced the 2023 chemistry prize, recognizing Moungi G. Bawendi, Louis E. Brus, and Alexei I. Ekimov “for the discovery and synthesis of quantum dots.”

Friday, Oct. 6, the Nobel Prize committee announced the 2023 Peace Prize, recognizing Narges Mohammadi “for her fight against the oppression of women in Iran and her fight to promote human rights and freedom for all.”

This page will be populated with the information and resources about the 2023 prizes and the newly named laureates. You can expect to find:

  • Overview of the prizes
  • Quotes from AIP leadership and possibly others
  • Biographies and original illustrations
  • Articles from AIP Publishing by and about these Nobel laureates (will be made freely available for a limited time)
  • Physics Today related content (will be made freely available for a limited time)
  • Key resources from the AIP Member Societies

 

For more information, contact: 
AIP Media Line 
301-209-3090 
[email protected]

Physics Nobel Prize Resources from AIP
From AIP Leadership

Michael Moloney, AIP's CEO: This work is truly groundbreaking. Attosecond laser pulses reveal the hidden world of electron dynamics within atoms and molecules. These techniques help us peer inside atoms to the scale of electrons, which were previously moving too fast for us to see — we didn’t have a strobe light fast enough to resolve the motion. This new window into the natural world allows us to probe electron dynamics in atomic and molecular systems, which are at the heart of the chemical and physical interactions of materials that underpin all our electronic, chemical, and medical innovations and technology.

Penelope Lewis, AIP Publishing's Chief Publishing Officer: This year’s prize is a spectacular demonstration of pioneering fundamental research pushing past the limits of what we once thought possible. Through their remarkable experimental and theoretical approaches to measuring ultrafast electronic dynamics, Agostini, Krausz, and L’Huillier are allowing us to understand essential physical processes at previously unattainable levels of detail.

Physics Today Resources - access for a limited time
Biographies

Pierre Agostini 

Pierre Agostini was educated in France, earning a Baccalauréat Mathématiques Elémentaires from the Prytanée Militaire La Flèche in 1959, and multiple degrees from the Université Aix-Marseille, including his teaching license in physics in 1961, a diploma of advanced studies in 1962, and his doctorate in 1968. After earning his doctorate, he worked as a researcher at the Commissariat à l’Energie Atomique (CEA) Paris-Saclay until 1996. During this period, he was a visiting professor at the University of Southern California and a visiting scientist at the FOM Institute for Atomic and Molecular Physics (AMOLF). Then in 1996, he was promoted to Expert Senior at CEA Paris-Saclay and from 1999 to 2002, served as Director of Research there and as Scientific Advisor from 2002 to 2003. It was here at CEA Paris-Saclay, that in 2001 Agostini invented the RABBITT (reconstruction of attosecond beating by interference of two-photon transitions) technique for measuring the width of attosecond light pulses. It was for this work that he won the Nobel Prize. 

Following his time as Director, Agostini spent some time at the Université Laval and Brookhaven National Laboratory. He was a Joop Los Fellow at AMOLF in 2003-04 and a Humboldt Fellow at the Max Born Institute in 2004-05. From 2004 onward, he was a Professor of Physics at Ohio State University. Agostini is currently Emeritus Professor at Ohio State University. 

Pierre Agostini won the 2007 William F. Meggers Award from Optica and was elected a Fellow in 2008 “for leadership in the development of innovative experiments providing major insights into the dynamics of the nonlinear response of atoms and molecules submitted to strong infrared laser pulses.” 

Ferenc Krausz 

Ferenc Krausz was born in 1962 in Mór, Hungary. He studied theoretical physics at Eötvös Loránd University and electrical engineering at the Budapest University of Technology, where he earned a Diploma with distinction in electrical engineering in 1985.  

He earned a Diploma with distinction in electrical engineering from the Budapest University of Technology and in theoretical physics from Eötvös Loránd University in 1985. He earned his doctorate with distinction in laser physics at the Technische Universität Wien (TUW) in 1991, where he worked with Arnold Schmidt. He did his habilitation in laser physics at TUW from 1991 to 1993. He was then an Assistant Professor of Electrical Engineering from 1996 to 1998 and a Full Professor from 1999 to 2004 at TUW. Since 2004, Krausz has been the Director at the Max Planck Institute of Quantum Optics and a Full Professor and Chair of Experimental Physics at Ludwig Maximilian University of Munich.  

Krausz has co-founded and led multiple organizations. From 2006 onward, Krausz has also been the Founding Director of the International Max Planck Research School of Advanced Photon Science. In that same year, Krausz also co-founded with Dietrich Habs the Munich-Centre for Advanced Photonics, of which he also served as director from 2010 to 2019. In addition, since 2015, he has been the Founding Director of the Center for Advanced Laser Applications at Ludwig Maximilian University of Munich. In 2019 he co-founded with Mihaela Žigman the Center for Molecular Fingerprinting in Budapest where he currently also serves as Scientific Director and CEO.  

Krausz has received multiple awards and honors over his career, including the Wolf Prize in 2022. In 2009, he was named a Fellow of Optica “for pioneering contributions to establishing experimental attosecond science, by generating few-cycle light with controlled waveform and by generating and measuring attosecond pulses and using them for observation of the motion of electrons on the atomic scale.” 

Anne L’Huillier 

Anne L’Huillier was born in Paris, France, in 1958. She was a student at the Ecole Normale Supérieure de Fontenay-aux-Roses from 1977 to 1981, earning a double master's degree in physics and mathematics in 1979 and a teaching degree in mathematics in 1980. In 1986, she earned her doctoral degree from the Université Pierre et Marie Curie, Paris, and Commissariat à l’Energie Atomique (CEA) Paris-Saclay. From 1986 to 1995 she was a Permanent researcher at the CEA Paris-Saclay. During that time, she also was a visiting postdoctoral researcher at the Chalmers Institute of Technology (in 1986), the University of Southern California (1988), and at the Lawrence Livermore National Laboratory (1993). In 1995, L’Huillier became a Docent at Lund University, was then promoted to Associate Professor, and since 1997 has been a Full Professor in Atomic Physics. It was in 2005, while at Lund University, that her group recorded light pulses at 170 attoseconds using high-order harmonic generation.  

L’Huillier has won multiple honors and awards, including the Wolf Prize in 2022, and in 2021 was the first woman to win Optica’s Max Born Award "for pioneering work in ultrafast laser science and attosecond physics, realizing and understanding high harmonic generation and applying it to time-resolved imaging of electron motion in atoms and molecules." She was elected an International Member of the National Academy of Sciences in 2018. In 2004, she was made a member of the Royal Swedish Academy of Sciences, and from 2007 to 2015, served as a member of the Nobel Ccommittee for Physics. L’Huillier was named a Fellow of the American Physical Society in 1998, and a Fellow of Optica in 2016. 

AIP Publishing Resources

Articles by Pierre Agostini

Probing the interplay between geometric and electronic-structure features via high-harmonic spectroscopy
T. T. Gorman, T. D. Scarborough, P. M. Abanador, F. Mauger, D. Kiesewetter, P. Sándor, S. Khatri, K. Lopata, K. J. Schafer, P. Agostini, M. B. Gaarde, L. F. DiMauro
The Journal of Chemical Physics 150, 184308 (2019)
https://doi.org/10.1063/1.5086036

High order harmonics from mid‐infrared drivers for attosecond physics
AIP Conference Proceedings 1161, 260–269 (2009)
G. Doumy, J. Wheeler, C. Roedig, P. Agostini, L. F. DiMauro
https://doi.org/10.1063/1.3241200

Resonant three‐photon ionization of potassium with circularly and linearly polarized light
P. Agostini, P. Bensoussan  
Applied Physics Letters 24, 216–219 (1974)
https://doi.org/10.1063/1.1655158

Phase and Polarization Control of the Harmonic Emission: Towards Attosecond Pulses
H. Merdji, Y. Mairesse, E. Priori, M. Kovacev, P. Agostini, P. Breger, P. Montchicourt, P. Salières, B. Carré, O. Tcherbakoff, E. Mével, E. Constant
AIP Conference Proceedings 641, 406–411 (2002)
https://doi.org/10.1063/1.1521051

Strong field atomic physics in the mid-infrared
B. Sheehy, J. D. D. Martin, T. O. Clatterbuck, D. W. Kim, L. F. DiMauro, P. Agostini, K. J. Schafer, M. B. Gaarde, K. C. Kulander
AIP Conference Proceedings 525, 59–69 (2000)
https://doi.org/10.1063/1.1291926

Optimizing high order harmonic generation in absorbing gases  
Eric Mével, Eric Constant, David Garzella, Pierre Breger, Christophe Dorrer, Catherine Le Blanc, François Salin, Pierre Agostini
AIP Conference Proceedings 525, 373–384 (2000)
https://doi.org/10.1063/1.1291955

Evolution from perturbative to field‐ionization regimes through electron spectroscopy
P. Agostini, E. Mevel, P. Breger, R. Trainham, G. Petite, A. Migus, J. P. Chambaret, A. Antonetti
AIP Conference Proceedings 290, 231–236 (1993)
https://doi.org/10.1063/1.45046

Physics at high intensities and low frequencies
Anne L’Huiller, Ph. Balcou, P. Monot, T. Auguste, L. A. Lompré, G. Mainfray, C. Manus, E. Mevel, P. Breger, R. Trainham, P. Agostini
AIP Conference Proceedings 275, 473–485 (1993)
https://doi.org/10.1063/1.43763

Femtosecond multiphoton generation of the self‐trapped exciton in α‐SiO2
W. Joosen, S. Guizard, P. Martin, G. Petite, P. Agostini, A. Dos Santos, G. Grillon, D. Hulin, A. Migus, A. Antonetti
Applied Physics Letters 61, 2260–2262 (1992)
https://doi.org/10.1063/1.108258

Atomic electron correlations in intense laser fields
L. F. DiMauro, B. Sheehy, B. Walker, P. A. Agostini, K. C. Kulander
AIP Conference Proceedings 477, 386–399 (1999)
https://doi.org/10.1063/1.59366

 

Articles by Ferenc Krausz 

On the small divergence of laser-driven ion beams from nanometer thick foils  
J. H. Bin, W. J. Ma, K. Allinger, H. Y. Wang, D. Kiefer, S. Reinhardt, P. Hilz, K. Khrennikov, S. Karsch, X. Q. Yan, F. Krausz, T. Tajima, D. Habs, J. Schreiber
Physics of Plasmas 20, 073113 (2013)
https://doi.org/10.1063/1.4816031

Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses
Guangjin Ma, William Dallari, Antonin Borot, Ferenc Krausz, Wei Yu, George D. Tsakiris, Laszlo Veisz
Physics of Plasmas 22, 033105 (2015)
https://doi.org/10.1063/1.4914087

A flexible apparatus for attosecond photoelectron spectroscopy of solids and surfaces
E. Magerl, S. Neppl, A. L. Cavalieri, E. M. Bothschafter, M. Stanislawski, Th. Uphues, M. Hofstetter, U. Kleineberg, J. V. Barth, D. Menzel, F. Krausz, R. Ernstorfer, R. Kienberger, P. Feulner
Review of Scientific Instruments 82, 063104 (2011)
https://doi.org/10.1063/1.3596564

Diagnostics of electron beams and plasma wave in laser-plasma accelerators
Laszlo Veisz, Alexander Buck, Maria Nicolai, Karl Schmid, Chris M. S. Sears, Alexander Sävert, Julia M. Mikhailova, Malte C. Kaluza, Ferenc Krausz
AIP Conference Proceedings 1507, 111–119 (2012)
https://doi.org/10.1063/1.4773683

A laser-driven nanosecond proton source for radiobiological studies
Jianhui Bin, Klaus Allinger, Walter Assmann, Günther Dollinger, Guido A. Drexler, Anna A. Friedl, Dieter Habs, Peter Hilz, Rainer Hoerlein, Nicole Humble, Stefan Karsch, Konstantin Khrennikov, Daniel Kiefer, Ferenc Krausz, Wenjun Ma, Dörte Michalski, Michael Molls, Sebastian Raith, Sabine Reinhardt, Barbara Röper, Thomas E. Schmid, Toshiki Tajima, Johannes Wenz, Olga Zlobinskaya, Joerg Schreiber, Jan J. Wilkens
Applied Physics Letters 101, 243701 (2012)
https://doi.org/10.1063/1.4769372

Versatile apparatus for attosecond metrology and spectroscopy
M. Fieß, M. Schultze, E. Goulielmakis, B. Dennhardt, J. Gagnon, M. Hofstetter, R. Kienberger, F. Krausz
Review of Scientific Instruments 82, 063104 (2011)
https://doi.org/10.1063/1.3596564

First milestone on the path toward a table‐top free‐electron laser (FEL)
M. Fuchs, R. Weingartner, A. Popp, Zs. Major, S. Becker, J. Osterhoff, T. Seggebrock, R. Hörlein, G. D. Tsakiris, U. Schramm, T. P. Rowlands‐Rees, S. M. Hooker, D. Habs, F. Krausz, S. Karsch, F. Grüner
AIP Conference Proceedings 1228, 295–299 (2010)
https://doi.org/10.1063/1.3426066

Status of the Petawatt Field Synthesizer—pump‐seed synchronization measurements
Zs. Major, S. Klingebiel, C. Skrobol, I. Ahmad, C. Wandt, S. A. Trushin, F. Krausz, S. Karsch
AIP Conference Proceedings 1228, 117–122 (2010)
https://doi.org/10.1063/1.3426040

On The Detection Of Footprints From Strong Electron Acceleration In High‐Intensity Laser Fields, Including The Unruh Effect  
P. G. Thirolf, D. Habs, K. Homma, R. Hörlein, S. Karsch, F. Krausz, C. Maia, J. Osterhoff, A. Popp, K. Schmid, J. Schreiber, R. Schützhold, T. Tajima, L. Veisz, J. Wulz, T. Yamazaki
AIP Conference Proceedings 1228, 54–67 (2010)
https://doi.org/10.1063/1.3426087

Absolute charge calibration of scintillating screens for relativistic electron detection
A. Buck, K. Zeil, A. Popp, K. Schmid, A. Jochmann, S. D. Kraft, B. Hidding, T. Kudyakov, C. M. S. Sears, L. Veisz, S. Karsch, J. Pawelke, R. Sauerbrey, T. Cowan, F. Krausz, U. Schramm
Review of Scientific Instruments 81, 033301 (2010)
https://doi.org/10.1063/1.3310275

Stable Laser‐Driven Electron Beams from a Steady‐State‐Flow Gas Cell
J. Osterhoff, A. Popp, Zs. Major, B. Marx, T. P. Rowlands‐Rees, M. Fuchs, R. Hörlein, F. Grüner, D. Habs, F. Krausz, S. M. Hooker, S. Karsch
AIP Conference Proceedings 1086, 125–130 (2009)
https://doi.org/10.1063/1.3080891

Progress in Laser Wakefield Acceleration with Few‐Cycle Lasers
Laszlo Veisz, Karl Schmid, Alexander Buck, Chris Sears, Julia Mikhailova, Raphael Tautz, Daniel Herrmann, Michael Geissler, Ferenc Krausz
AIP Conference Proceedings 1299, 156–160 (2010)
https://doi.org/10.1063/1.3520305

A high resolution, broad energy acceptance spectrometer for laser wakefield acceleration experiments
Christopher M. S. Sears, Sofia Benavides Cuevas, Ulrich Schramm, Karl Schmid, Alexander Buck, Dieter Habs, Ferenc Krausz, Laszlo Veisz
Review of Scientific Instruments 81, 073304 (2010)
https://doi.org/10.1063/1.3458013

Attosecond Control And Spectroscopy Of Electrons
Reinhard Kienberger, Ferenc Krausz
AIP Conference Proceedings 827, 385–394 (2006)
https://doi.org/10.1063/1.2195228

Sub-10-fs laser-driven harmonic sources  
M. Hentschel, M. Schnürer, F. Krausz
AIP Conference Proceedings 525, 361–372 (2000)
https://doi.org/10.1063/1.1291954

Compression of high energy femtosecond pulses by the hollow fiber technique: Generation of sub-5-fs multigigawatt pulses  
M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, F. Krausz
AIP Conference Proceedings 426, 304–313 (1998)
https://doi.org/10.1063/1.55238

Subfemtosecond Pulse Generation and Measurement
Michael Hentschel, Reinhard Kienberger, Markus Drescher, Georg Reider, Christian Spielmann, Ferenc Krausz
AIP Conference Proceedings 641, 389–396 (2002)
https://doi.org/10.1063/1.1521048

Toward attosecond metrology
Michael Hentschel, Reinhard Kienberger, Markus Drescher, Paul Corkum, Ferenc Krausz
AIP Conference Proceedings 611, 56–62 (2002)
https://doi.org/10.1063/1.1470288

Femtosecond passive mode locking of a solid‐state laser by a dispersively balanced nonlinear interferometer
Ch. Spielmann, F. Krausz, T. Brabec, E. Wintner, A. J. Schmidt
Applied Physics Letters 58, 2470–2472 (1991)
https://doi.org/10.1063/1.104847

Amplitude modulation mode locking of lasers by regenerative feedback
L. Turi, F. Krausz
Applied Physics Letters 58, 810–812 (1991)
https://doi.org/10.1063/1.104496

Active mode locking of lasers by piezoelectrically induced diffraction modulation
F. Krausz, L. Turi, Cs. Kuti, A. J. Schmidt
Applied Physics Letters 56, 1415–1417 (1990)
https://doi.org/10.1063/1.102485

Mode locking of a continuous wave Nd:glass laser pumped by a multistripe diode laser
F. Krausz, T. Brabec, E. Wintner, A. J. Schmidt
Applied Physics Letters 55, 2386–2388 (1989)
https://doi.org/10.1063/1.102025

Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps
Wolfgang Kautek, Jörg Krüger, Matthias Lenzner, Sasa Sartania, Christian Spielmann, Ferenc Krausz
Applied Physics Letters 69, 3146–3148 (1996)
https://doi.org/10.1063/1.116810

 

Articles by Anne L'Huillier

Design and test of a broadband split-and-delay unit for attosecond XUV-XUV pump-probe experiments
F. Campi, H. Coudert-Alteirac, M. Miranda, L. Rading, B. Manschwetus, P. Rudawski, A. L’Huillier, P. Johnsson
Review of Scientific Instruments 87, 023106 (2016)
https://doi.org/10.1063/1.4941722

Direct subwavelength imaging and control of near-field localization in individual silver nanocubes       
Erik Mårsell, Robin Svärd, Miguel Miranda, Chen Guo, Anne Harth, Eleonora Lorek, Johan Mauritsson, Cord L. Arnold, Hongxing Xu, Anne L'Huillier, Anders Mikkelsen, Arthur Losquin
Applied Physics Letters 107, 201111 (2015)
https://doi.org/10.1063/1.4935831

A high-flux high-order harmonic source
P. Rudawski, C. M. Heyl, F. Brizuela, J. Schwenke, A. Persson, E. Mansten, R. Rakowski, L. Rading, F. Campi, B. Kim, P. Johnsson, A. L’Huillier
Review of Scientific Instruments 84, 073103 (2013)
https://doi.org/10.1063/1.4812266

Multi-purpose two- and three-dimensional momentum imaging of charged particles for attosecond experiments at 1 kHz repetition rate
Erik P. Månsson, Stacey L. Sorensen, Cord L. Arnold, David Kroon, Diego Guénot, Thomas Fordell, Franck Lépine, Per Johnsson, Anne L’Huillier, Mathieu Gisselbrecht
Review of Scientific Instruments 85, 123304 (2014)
https://doi.org/10.1063/1.4904372

Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains
A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, A. L’Huillier
Review of Scientific Instruments 80, 123703 (2009)
https://doi.org/10.1063/1.3263759

Lifetime and predissociation yield of N214 b 1Πu(v=1)
J. P. Sprengers, W. Ubachs, A. Johansson, A. L’Huillier, C.-G. Wahlström, R. Lang, B. R. Lewis, S. T. Gibson J. The Journal of Chemical Physics 120, 8973–8978 (2004)
https://doi.org/10.1063/1.1704640

The predissociation of highly excited states in acetylene by time-resolved photoelectron spectroscopy
S. Zamith, V. Blanchet, B. Girard, J. Andersson, S. L. Sorensen, I. Hjelte, O. Björneholm, D. Gauyacq, J. Norin, J. Mauritsson, A. L’Huillier
The Journal of Chemical Physics 119, 3763–3773 (2003)
https://doi.org/10.1063/1.1589479

Applications of high-order harmonic generation
D. Descamps, J. Norin, C. Lyngå, S. Buil, A. L’Huillier, C.-G. Wahlström, S. L. Sorensen, O. Björneholm, M. Gisselbrecht, M. Meyer, J.-F. Hergott, H. Merdji, P. Salières, M. Bellini, S. Huller
AIP Conference Proceedings 525, 337–348 (2000)
https://doi.org/10.1063/1.1291952

Femtosecond pump–probe photoelectron spectroscopy of predissociative Rydberg states in acetylene
S. L. Sorensen, O. Björneholm, I. Hjelte, T. Kihlgren, G. Öhrwall, S. Sundin, S. Svensson, S. Buil, D. Descamps, A. L’Huillier, J. Norin, C.-G. Wahlström
The Journal of Chemical Physics 112, 8038–8042 (2000)
https://doi.org/10.1063/1.481402

Applications of terawatt lasers
S. Svanberg, S. Andersson‐Engels, R. Berg, S. Borgström, J. Carlsson, B. Erlandsson, H. M. Hertz, J. Larsson, A. Persson, W. Persson, S. G. Pettersson, T. Starczewski, C. Tillman, C. G. Wahlström, R. Zerne, K. Herrlin, C. Olsson, H. Petersson, G. Svahn, Ph. Balcou, A. L’Huillier, P. Salières, M. H. R. Hutchinson, J. W. G. Tisch, R. A. Smith
AIP Conference Proceedings 290, 264–269 (1993)
https://doi.org/10.1063/1.45052

Generation of very high harmonics of optical radiation in rare gases
A. L’Huillier, L. A. Lompré, G. Mainfray
AIP Conference Proceedings 205, 505–512 (1990)
https://doi.org/10.1063/1.39269

Harmonic generation in rare gases: Single atom response and propagation effects
L.‐A. Lompré, A. L’Huillier, M. Ferray, G. Mainfray
AIP Conference Proceedings 206, 277–288 (1990)
https://doi.org/10.1063/1.39290

Multiply charged ions produced by multiphoton absorption in rare gas atoms
A. L’Huillier, L−A. Lompré, G. Mainfray, C. Manus
AIP Conference Proceedings 119, 79–88 (1984)
https://doi.org/10.1063/1.34712

Multielectron multiphoton ionization
Anne L’Huillier
AIP Conference Proceedings 147, 182–192 (1986)
https://doi.org/10.1063/1.35986

Physics at high intensities and low frequencies
Anne L’Huiller, Ph. Balcou, P. Monot, T. Auguste, L. A. Lompré, G. Mainfray, C. Manus, E. Mevel, P. Breger, R. Trainham, P. Agostini
AIP Conference Proceedings 275, 473–485 (1993)
https://doi.org/10.1063/1.43763

AIP Member Society Resources

Optica

Three Optica Fellows awarded 2023 Nobel Prize in Physics for experimental methods enabling attosecond physics

Other Member Societies and AIP Publishing Partners

Below you will find links to relevant works freely available to read for a limited time:

Articles by Pierre Agostini

High-harmonic spectroscopy of transient two-center interference calculated with time-dependent density-functional theory  
François Mauger, Paul M. Abanador, Timothy D. Scarborough, Timothy T. Gorman, Pierre Agostini, Louis F. DiMauro, Kenneth Lopata, Kenneth J. Schafer, Mette B. Gaarde  
Structural Dynamics 6, 044101 (2019)
https://doi.org/10.1063/1.5111349

Articles by Ferenc Krausz 

Femtosecond single-electron diffraction
S. Lahme, C. Kealhofer, F. Krausz, P. Baum
Struct. Dyn. 1, 034303 (2014)
https://doi.org/10.1063/1.4884937

Attosecond physics
Reinhard Kienberger, Ferenc Krausz  
LIA Conference Proceedings
https://doi.org/10.2351/1.5061046

Articles by Anne L'Huillier

Physics of attosecond pulses produced via high harmonic generation
Katalin Varjú, Per Johnsson, Johan Mauritsson, Anne L’Huillier, Rodrigo López-Martens
American Journal of Physics 77, 389–395 (2009)
https://doi.org/10.1119/1.3086028

Related Content

Upcoming Special Topic from Structural Dynamics: Imaging ultrafast structural dynamics in attosecond and strong-field spectroscopy

Nobel Peace Prize Resources from AIP
From AIP Leadership

Michael Moloney, AIP's CEO: I want to commend the Nobel Peace Committee for acknowledging the inspiring, courageous, and stalwart work in which physicist, engineer, and defender of human rights, Narges Mohammadi has been engaged,” said Michael Moloney, AIP Chief Executive Officer. “Ms. Mohammadi has been recognized across the world for her efforts to advocate for the rights of women, prisoners of conscience, and others. Today all of AIP joins others across the globe in reflecting on our hope that this recognition will let Ms. Mohammadi know the world has not forgotten her voice and the voices of those she advocates for.

Biographies

Narges Mohammadi was born in 1972 in Zanjan, Iran. She attended Imam Khomeini International University where she majored in physics. While in college she started becoming active in social justice movements, working particularly on women’s and students’ rights. After earning her bachelor’s degree, she began work at the Iran Engineering Inspection Corporation while simultaneously working as a journalist specializing in human rights issues. She was fired from her position as an engineer in 2009, marking her move into full-time activism. Mohammadi has been the spokesperson and vice-president of the Defenders of Human Rights Center, president of the Executive Committee of the National Council of Peace in Iran, and a founder of the Women’s Civil Center. Her activism has focused on the rights of women and prisoners of conscience, including speaking out against sexual and physical abuse of women and detainees, torture, and the death penalty. She has been arrested, jailed, and tortured multiple times because of her work, and is currently in prison.  

Mohammadi has won multiple awards for her activism, including the 2018 Andrei Sakharov Prize of the American Physical Society, the 2009 Alexander Langer Award, and the 2011 Per Anger Prize. 

AIP Member Resources
AIP Member Society Resources

American Physical Society

Information on Narges Mohammadi's 2018 Andrei Sakharov Prize

From Physics Today
Chemistry Nobel Prize resources

From the Editor-in-Chief of Journal of Chemical Physics, Tianquan (Tim) Lian: The Journal of Chemical Physics is proud to be the home for some of the earliest work in the field of colloidal quantum dots. These include the seminal papers by Brus in 1983 that started the field of colloidal quantum dots (https://doi.org/10.1063/1.445834, https://doi.org/10.1063/1.447218, https://doi.org/10.1063/1.447228), and the early publications of Bawendi as a postdoctoral fellow (https://doi.org/10.1063/1.457295) and as an independent group leader (https://doi.org/10.1063/1.466420, https://doi.org/10.1063/1.470559). These seminal papers have had profound impact on the field and on my own research.

 

Below you will find links to relevant works from AIP Publishing, freely available to read for a limited time.

Winning Papers

A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites
L. E. Brus
J. Chem. Phys. 79, 5566–5571 (1983)
https://doi.org/10.1063/1.445676

Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution
R. Rossetti, S. Nakahara, L. E. Brus
J. Chem. Phys. 79, 1086–1088 (1983)
https://doi.org/10.1063/1.445834

Size effects in the excited electronic states of small colloidal CdS crystallites
R. Rossetti, J. L. Ellison, J. M. Gibson, L. E. Brus
J. Chem. Phys. 80, 4464–4469 (1984)
https://doi.org/10.1063/1.447228

 

Special Collections in The Journal of Chemical Physics

40 Years of Colloidal Nanocrystals

Festschrift in honor of Louis E. Brus (open for submissions)

Colloidal Quantum Dots

 

Articles by Moungi G. Bawendi

Discovery of blue singlet exciton fission molecules via a high-throughput virtual screening and experimental approach
Collin F. Perkinson, Daniel P. Tabor, Markus Einzinger, Dennis Sheberla, Hendrik Utzat, Ting-An Lin, Daniel N. Congreve, Moungi G. Bawendi, Alán Aspuru-Guzik, Marc A. Baldo
J. Chem. Phys. 151, 121102 (2019)
https://doi.org/10.1063/1.5114789

10 nm gap bowtie plasmonic apertures fabricated by modified lift-off process
I-Chun Huang, Jeffrey Holzgrafe, Russell A. Jensen, Jennifer T. Choy, Moungi G. Bawendi, Marko Lončar
Appl. Phys. Lett. 109, 133105 (2016)
https://doi.org/10.1063/1.4963689

Lateral heterojunction photodetector consisting of molecular organic and colloidal quantum dot thin films
Tim P. Osedach, Scott M. Geyer, John C. Ho, Alexi C. Arango, Moungi G. Bawendi, Vladimir Bulović
Appl. Phys. Lett. 94, 043307 (2009)
https://doi.org/10.1063/1.3075577

Size Dependence of Phonon Scattering in CdSe/CdS/ZnS Nanocrystals
Thomas J. Liptay, Sonia Rao Pallavi, Rajeev J. Ram, Moungi G. Bawendi
AIP Conf. Proc. 893, 1067–1068 (2007)
https://doi.org/10.1063/1.2730266

Electrically driven light emission from single colloidal quantum dots at room temperature
Hao Huang, August Dorn, Vladimir Bulovic, Moungi G. Bawendi
Appl. Phys. Lett. 90, 023110 (2007)
https://doi.org/10.1063/1.2425043

Multi-island single-electron devices from self-assembled colloidal nanocrystal chains
Dirk N. Weiss, Xavier Brokmann, Laurie E. Calvet, Marc A. Kastner, Moungi G. Bawendi
Appl. Phys. Lett. 88, 143507 (2006)
https://doi.org/10.1063/1.2189012

Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal
Jongseung Yoon, Wonmok Lee, Jean-Michel Caruge, Moungi Bawendi, Edwin L. Thomas, Steven Kooi, Paras N. Prasad
Appl. Phys. Lett. 88, 091102 (2006)
https://doi.org/10.1063/1.2174090

Photodetectors based on treated CdSe quantum-dot films
David C. Oertel, Moungi G. Bawendi, Alexi C. Arango, Vladimir Bulović
Appl. Phys. Lett. 87, 213505 (2005)
https://doi.org/10.1063/1.2136227

Blue semiconductor nanocrystal laser
Yinthai Chan, Jonathan S. Steckel, Preston T. Snee, J.-Michel Caruge, Justin M. Hodgkiss, Daniel G. Nocera, Moungi G. Bawendi
Appl. Phys. Lett. 86, 073102 (2005)
https://doi.org/10.1063/1.1863445

Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots
Ylva K. Olsson, Gang Chen, Ronen Rapaport, Dan T. Fuchs, Vikram C. Sundar, Jonathan S. Steckel, Moungi G. Bawendi, Assaf Aharoni, Uri Banin
Appl. Phys. Lett. 85, 4469–4471 (2004)
https://doi.org/10.1063/1.1818723

Multiexcitonic two-state lasing in a CdSe nanocrystal laser
Y. Chan, J.-Michel Caruge, P. T. Snee, M. G. Bawendi
Appl. Phys. Lett. 85, 2460–2462 (2004)
https://doi.org/10.1063/1.1795368

Imaging the charge transport in arrays of CdSe nanocrystals
M. Drndić, R. Markov, M. V. Jarosz, M. G. Bawendi, M. A. Kastner, N. Markovic, M. Tinkham
Appl. Phys. Lett. 83, 4008–4010 (2003)
https://doi.org/10.1063/1.1626268

Quantum-dot optical temperature probes
Glen W. Walker, Vikram C. Sundar, Christina M. Rudzinski, Aetna W. Wun, Moungi G. Bawendi, Daniel G. Nocera
Appl. Phys. Lett. 83, 3555–3557 (2003)
https://doi.org/10.1063/1.1620686

Transport properties of annealed CdSe colloidal nanocrystal solids
M. Drndić, M. V. Jarosz, N. Y. Morgan, M. A. Kastner, M. G. Bawendi
J. Appl. Phys. 92, 7498–7503 (2002)
https://doi.org/10.1063/1.1523148

From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids
A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, V. I. Klimov
Appl. Phys. Lett. 81, 1303–1305 (2002)
https://doi.org/10.1063/1.1497708

Color-selective semiconductor nanocrystal laser
Hans-Jürgen Eisler, Vikram C. Sundar, Moungi G. Bawendi, Michael Walsh, Henry I. Smith, Victor Klimov
Appl. Phys. Lett. 80, 4614–4616 (2002)
https://doi.org/10.1063/1.1485125

Multiparticle interactions and stimulated emission in chemically synthesized quantum dots
A. A. Mikhailovsky, A. V. Malko, J. A. Hollingsworth, M. G. Bawendi, V. I. Klimov
Appl. Phys. Lett. 80, 2380–2382 (2002)
https://doi.org/10.1063/1.1463704

Evidence of photo- and electrodarkening of (CdSe)ZnS quantum dot composites
J. Rodrı́guez-Viejo, H. Mattoussi, J. R. Heine, M. K. Kuno, J. Michel, M. G. Bawendi, K. F. Jensen
J. Appl. Phys. 87, 8526–8534 (2000)
https://doi.org/10.1063/1.373573

Composite thin films of CdSe nanocrystals and a surface passivating/electron transporting block copolymer: Correlations between film microstructure by transmission electron microscopy and electroluminescence
H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, D. E. Fogg, R. R. Schrock, E. L. Thomas, M. F. Rubner, M. G. Bawendi
J. Appl. Phys. 86, 4390–4399 (1999)
https://doi.org/10.1063/1.371376

Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals
Hedi Mattoussi, Leonard H. Radzilowski, Bashir O. Dabbousi, Edwin L. Thomas, Moungi G. Bawendi, Michael F. Rubner
J. Appl. Phys. 83, 7965–7974 (1998)
https://doi.org/10.1063/1.367978

Magnetic circular dichroism study of CdSe quantum dots
M. Kuno, M. Nirmal, M. G. Bawendi, Alexander Efros, Mervine Rosen
J. Chem. Phys. 108, 4242–4247 (1998)
https://doi.org/10.1063/1.475823

The band edge luminescence of surface modified CdSe nanocrystallites
M. Kuno, J. K. Lee, B. O. Dabbousi, F. V. Mikulec, M. G. Bawendi
J. Chem. Phys. 106, 9869–9882 (1997)
https://doi.org/10.1063/1.473875

Cathodoluminescence and photoluminescence of highly luminescent CdSe/ZnS quantum dot composites
J. Rodriguez-Viejo, K. F. Jensen, H. Mattoussi, J. Michel, B. O. Dabbousi, M. G. Bawendi
Appl. Phys. Lett. 70, 2132–2134 (1997)
https://doi.org/10.1063/1.119043

Characterization of CdSe nanocrystallite dispersions by small angle x‐ray scattering
H. Mattoussi, A. W. Cumming, C. B. Murray, M. G. Bawendi, R. Ober
J. Chem. Phys. 105, 9890–9896 (1996)
https://doi.org/10.1063/1.472854

Structure in the lowest absorption feature of CdSe quantum dots
D. J. Norris, M. G. Bawendi
J. Chem. Phys. 103, 5260–5268 (1995)
https://doi.org/10.1063/1.470561

Stark spectroscopy of CdSe nanocrystallites: The significance of transition linewidths
A. Sacra, D. J. Norris, C. B. Murray, M. G. Bawendi
J. Chem. Phys. 103, 5236–5245 (1995)
https://doi.org/10.1063/1.470559

Electroluminescence from CdSe quantum‐dot/polymer composites
B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, M. F. Rubner
Appl. Phys. Lett. 66, 1316–1318 (1995)
https://doi.org/10.1063/1.113227

Electrospray organometallic chemical vapor deposition—A novel technique for preparation of II–VI quantum dot composites
M. Danek, K. F. Jensen, C. B. Murray, M. G. Bawendi
Appl. Phys. Lett. 65, 2795–2797 (1994)
https://doi.org/10.1063/1.112568

Investigation of the surface morphology of capped CdSe nanocrystallites by 31P nuclear magnetic resonance
L. R. Becerra, C. B. Murray, R. G. Griffin, M. G. Bawendi
J. Chem. Phys. 100, 3297–3300 (1994)
https://doi.org/10.1063/1.466420

Luminescence properties of CdSe quantum crystallites: Resonance between interior and surface localized states
M. G. Bawendi, P. J. Carroll, William L. Wilson, L. E. Brus
J. Chem. Phys. 96, 946–954 (1992)
https://doi.org/10.1063/1.462114

Laboratory observation of hot bands of H+3
M. G. Bawendi, B. D. Rehfuss, T. Oka
J. Chem. Phys. 93, 6200–6209 (1990)
https://doi.org/10.1063/1.458989

X‐ray structural characterization of larger CdSe semiconductor clusters
M. G. Bawendi, A. R. Kortan, M. L. Steigerwald, L. E. Brus
J. Chem. Phys. 91, 7282–7290 (1989)
https://doi.org/10.1063/1.457295

Observation and analysis of the ν3 band of NH+3
M. G. Bawendi, B. D. Rehfuss, B. M. Dinelli, M. Okumura, T. Oka
J. Chem. Phys. 90, 5910–5917 (1989)
https://doi.org/10.1063/1.456356

Difference frequency laser spectroscopy of the ν3 fundamental band of NH+2
M. Okumura, B. D. Rehfuss, B. M. Dinelli, M. G. Bawendi, T. Oka
J. Chem. Phys. 90, 5918–5923 (1989)
https://doi.org/10.1063/1.456357

Systematic corrections to Flory–Huggins theory: Polymer–solvent–void systems and binary blend–void systems
M. G. Bawendi, Karl F. Freed
J. Chem. Phys. 88, 2741–2756 (1988)
https://doi.org/10.1063/1.454005

Lattice models of polymer solutions: Monomers occupying several lattice sites
A. M. Nemirovsky, M. G. Bawendi, Karl F. Freed
J. Chem. Phys. 87, 7272–7284 (1987)
https://doi.org/10.1063/1.453320

A lattice field theory for polymer systems with nearest‐neighbor interaction energies
M. G. Bawendi, Karl F. Freed, Udayan Mohanty
J. Chem. Phys. 87, 5534–5540 (1987)
https://doi.org/10.1063/1.453638

A lattice model for self‐ and mutually avoiding semiflexible polymer chains
M. G. Bawendi, Karl F. Freed
J. Chem. Phys. 86, 3720–3730 (1987)
https://doi.org/10.1063/1.451974

Statistical mechanics of the packing of rods on a lattice: Cluster expansion for systematic corrections to mean field
M. G. Bawendi, Karl F. Freed
J. Chem. Phys. 85, 3007–3022 (1986)
https://doi.org/10.1063/1.451830

A lattice model for self‐avoiding polymers with controlled length distributions. II. Corrections to Flory–Huggins mean field
M. G. Bawendi, Karl F. Freed, Udayan Mohanty
J. Chem. Phys. 84, 7036–7047 (1986)
https://doi.org/10.1063/1.450625

Renormalization group treatment of excluded volume effects in a polyelectrolyte chain in the weak electrostatic coupling limit. II. Decomposition of interactions and calculation of properties
M. G. Bawendi, Karl F. Freed
J. Chem. Phys. 84, 449–464 (1986)
https://doi.org/10.1063/1.450160

A Wiener integral model for stiff polymer chains
M. G. Bawendi, Karl F. Freed
J. Chem. Phys. 83, 2491–2496 (1985)
https://doi.org/10.1063/1.449296

 

Articles by Louis E. Brus

Non-local dielectric effects in nanoscience
Archana Raja, Louis E. Brus
J. Chem. Phys. 159, 020901 (2023)
https://doi.org/10.1063/5.0150293

Dopant local bonding and electrical activity near Si(001)-oxide interfaces
Zhiyong Zhou, Michael L. Steigerwald, Richard A. Friesner, Louis Brus, Mark S. Hybertsen
J. Appl. Phys. 98, 076105 (2005)
https://doi.org/10.1063/1.2071447

High-resolution spatial mapping of the temperature distribution of a Joule self-heated graphene nanoribbon
Young-Jun Yu, Melinda Y. Han, Stéphane Berciaud, Alexandru B. Georgescu, Tony F. Heinz, Louis E. Brus, Kwang S. Kim, Philip Kim
Appl. Phys. Lett. 99, 183105 (2011)
https://doi.org/10.1063/1.3657515

Interdependence of guest radiationless transitions and localized phonon structure: NH and ND(A 3Π) in rare gas lattices
V. E. Bondybey, L. E. Brus
J. Chem. Phys. 63, 794–804 (1975)
https://doi.org/10.1063/1.431359

Pseudorotational local mode participation in OH and OD(A 2Σ+) vibrational relaxation in a Ne lattice
L. E. Brus, V. E. Bondybey
J. Chem. Phys. 63, 786–793 (1975)
https://doi.org/10.1063/1.431358

Photophysics of C−2 (B 2Σ+u) in rare gas lattices: Vibrational relaxation through intermediate a 4Σ+u levels
V. E. Bondybey, L. E. Brus
J. Chem. Phys. 63, 2223–2231 (1975)
https://doi.org/10.1063/1.431605

Molecular ions and electron transport in rare gas lattices: C−2 formation mechanism and X 2Σ+g↔B 2Σ+u spectroscopy
L. E. Brus, V. E. Bondybey
J. Chem. Phys. 63, 3123–3129 (1975)
https://doi.org/10.1063/1.431740

Rigid cage effect on ICl photodissociation and B O+ fluorescence in rare gas matrices
V. E. Bondybey, L. E. Brus
J. Chem. Phys. 62, 620–629 (1975)
https://doi.org/10.1063/1.430462

Long range vibrational energy transfer from ND and NH(A 3Π) to CO and N2 in solid Ar
J. Goodman, L. E. Brus
J. Chem. Phys. 65, 1156–1164 (1976)
https://doi.org/10.1063/1.433191

Ground X 2Σ+ state potential well, and excited state dynamics of diatomic XeF in solid Ne and Ar
Julie Goodman, L. E. Brus
J. Chem. Phys. 65, 3808–3812 (1976)
https://doi.org/10.1063/1.432897

Cage effects and steric hindrance in van der Waals solids, with application to alkyl iodide photolysis in rare gas hosts
L. E. Brus, V. E. Bondybey
J. Chem. Phys. 65, 71–76 (1976)
https://doi.org/10.1063/1.432757

Mechanism of vibrational relaxation in molecular solids
J. Goodman, L. E. Brus
J. Chem. Phys. 65, 3146–3152 (1976)
https://doi.org/10.1063/1.433484

Rigid cage photodissociation dynamics: A double minimum problem for ICl in Ne and Ar lattices
V. E. Bondybey, L. E. Brus
J. Chem. Phys. 64, 3724–3731 (1976)
https://doi.org/10.1063/1.432686

Hydrogen bonding and charge transfer: Interaction of OH radical with rare gas atoms
Julie Goodman, L. E. Brus
J. Chem. Phys. 67, 4858–4865 (1977)
https://doi.org/10.1063/1.434665

Excited state spectroscopy, subpicosecond predissociation, and solvation of diatomic XeO in solid rare gas hosts
Julie Goodman, J. C. Tully, V. E. Bondybey, L. E. Brus
J. Chem. Phys. 66, 4802–4810 (1977)
https://doi.org/10.1063/1.433843

Electronic spectroscopy and dynamics of the low‐lying A 3Σ+u, C 3Δu, and c 1Σ−u states of O2 in van der Waals solids
Julie Goodman, L. E. Brus
J. Chem. Phys. 67, 1482–1490 (1977)
https://doi.org/10.1063/1.435023

Rydberg states in condensed phases: Evidence for small ’’bubble’’ formation around NO 3sσ (A 2Σ+) in solid rare gases
Julie Goodman, L. E. Brus
J. Chem. Phys. 67, 933–940 (1977)
https://doi.org/10.1063/1.434918

Local mode involvement in the vibrational relaxation of isolated (O2)2 dimers
Julie Goodman, L. E. Brus
J. Chem. Phys. 67, 4408–4413 (1977)
https://doi.org/10.1063/1.434585

Structure and energy transfer within isolated (O2)2 dimers via high resolution electronic spectroscopy
Julie Goodman, L. E. Brus
J. Chem. Phys. 67, 4398–4407 (1977)
https://doi.org/10.1063/1.434584

Weak isotope effect in the condensed phase vibrational relaxation of a nonhydride molecule: NO(a 4Π)
J. Goodman, L. E. Brus
J. Chem. Phys. 69, 1853–1857 (1978)
https://doi.org/10.1063/1.436846

Vibrational relaxation and small ’’bubble’’ spectroscopy of the NO 3sσ (A 2Σ+) Rydberg state in solid rare gases
J. Goodman, L. E. Brus
J. Chem. Phys. 69, 4083–4086 (1978)
https://doi.org/10.1063/1.437141

Distant intramolecular interaction between identical chromophores: The n‐π* excited states of p‐benzoquinone
Julie Goodman, L. E. Brus
J. Chem. Phys. 69, 1604–1612 (1978)
https://doi.org/10.1063/1.436734

Structure and dynamics of the biphenyl ring torsion in solid neon and argon
A. Baca, R. Rossetti, L. E. Brus
J. Chem. Phys. 70, 5575–5581 (1979)
https://doi.org/10.1063/1.437432

Ground and n–π* excited state structures of the hydrogen bonded complexes pyrazine⋅H2O and pyrazine⋅ (H2O)2
R. Rossetti, L. E. Brus
J. Chem. Phys. 70, 4730–4736 (1979)
https://doi.org/10.1063/1.437261

The mechanism of vibrational relaxation in solids: Multiphonon relaxation of O2(c 1Σ−u) in Ar, Kr, and mixed Ar–Kr matrices
R. Rossetti, L. E. Brus
J. Chem. Phys. 71, 3963–3970 (1979)
https://doi.org/10.1063/1.438166

Waveguide propagation in frozen gas matrices
R. Rossetti, L. E. Brus
Rev. Sci. Instrum. 51, 467–470 (1980)
https://doi.org/10.1063/1.1136247

Direct picosecond observation of unrelaxed fluorescence from tetracene in condensed media
P. F. Barbara, P. M. Rentzepis, L. E. Brus
J. Chem. Phys. 72, 6802–6803 (1980)
https://doi.org/10.1063/1.439172

Proton tunneling dynamics and an isotopically dependent equilibrium geometry in the lowest excited π–π* singlet state of tropolone
R. Rossetti, L. E. Brus
J. Chem. Phys. 73, 1546–1550 (1980)
https://doi.org/10.1063/1.440334

Time resolved molecular electronic energy transfer into a silver surface
R. Rossetti, L. E. Brus
J. Chem. Phys. 73, 572–577 (1980)
https://doi.org/10.1063/1.439857

Application of classical electromagnetic theory to an understanding of molecular vibrational energy transfer into metal surfaces
L. E. Brus
J. Chem. Phys. 73, 940–945 (1980)
https://doi.org/10.1063/1.440213

Chemisorptive Luminescence: Oxygen on Si(111) Surfaces
L. E. Brus, J. Comas
J. Chem. Phys. 54, 2771–2776 (1971)
https://doi.org/10.1063/1.1675255

Chemical CO Laser from the O(1D) + C3O2(1Σ+g)→3CO(1Σ+) Reaction
M. C. Lin, L. E. Brus
J. Chem. Phys. 54, 5423–5424 (1971)
https://doi.org/10.1063/1.1674844

"Lifetime Studies of Na(32P) and Tl(72S) Produced by Photodissociation and Quenched by Halogens"
L. E. Brus
J. Chem. Phys. 52, 1716–1726 (1970)
https://doi.org/10.1063/1.1673210

Excited state electronic structure and dynamics in sym ‐tetrazine vapor
J. R. McDonald, L. E. Brus
J. Chem. Phys. 59, 4966–4971 (1973)
https://doi.org/10.1063/1.1680714

"Trnasition Dipole Moments in Extreme Renner Effect Molecules, with Application to the Visible A1↔ B1 Bands in CH2, NH2, and BH2"
L. E. Brus
J. Chem. Phys. 57, 3167–3174 (1972)
https://doi.org/10.1063/1.1678734

Electronic structure and dynamics of tunable laser excited p‐benzoquinone (‐h4 and ‐d4) in the gas phase
L. E. Brus, J. R. McDonald
J. Chem. Phys. 58, 4223–4235 (1973)
https://doi.org/10.1063/1.1678978

Radiative and radiationless transition phenomena in 1,4‐, 1,3‐, and 1,2‐diazanaphthalene vapors
J. R. McDonald, L. E. Brus
J. Chem. Phys. 61, 3895–3904 (1974)
https://doi.org/10.1063/1.1681682

Time‐resolved fluorescence kinetics and 1B1(1Δg) vibronic structure in tunable ultraviolet laser excited SO2 vapor
L. E. Brus, J. R. McDonald
J. Chem. Phys. 61, 97–105 (1974)
https://doi.org/10.1063/1.1681676

Large molecule rotational structure via single‐mode laser resonance fluorescence
S. H. Dworetsky, L. E. Brus, R. S. Hozack
J. Chem. Phys. 61, 1581–1582 (1974)
https://doi.org/10.1063/1.1682103

Electronic properties of CdSe nanocrystals in the absence and presence of a dielectric medium
Eran Rabani, Balázs Hetényi, B. J. Berne, L. E. Brus
J. Chem. Phys. 110, 5355–5369 (1999)
https://doi.org/10.1063/1.478431

Interdot interactions and band gap changes in CdSe nanocrystal arrays at elevated pressure
Bosang S. Kim, Mohammad A. Islam, Louis E. Brus, Irving P. Herman
J. Appl. Phys. 89, 8127–8140 (2001)
https://doi.org/10.1063/1.1369405

Organic ligand and solvent kinetics during the assembly of CdSe nanocrystal arrays using infrared attenuated total reflection
Bosang S. Kim, Luis Avila, Louis E. Brus, Irving P. Herman
Appl. Phys. Lett. 76, 3715–3717 (2000)
https://doi.org/10.1063/1.126759

Luminescence properties of CdSe quantum crystallites: Resonance between interior and surface localized states
M. G. Bawendi, P. J. Carroll, William L. Wilson, L. E. Brus
J. Chem. Phys. 96, 946–954 (1992)
https://doi.org/10.1063/1.462114

X‐ray structural characterization of larger CdSe semiconductor clusters
M. G. Bawendi, A. R. Kortan, M. L. Steigerwald, L. E. Brus
J. Chem. Phys. 91, 7282–7290 (1989)
https://doi.org/10.1063/1.457295

Electron–vibration coupling in semiconductor clusters studied by resonance Raman spectroscopy
A. P. Alivisatos, T. D. Harris, P. J. Carroll, M. L. Steigerwald, L. E. Brus
J. Chem. Phys. 90, 3463–3468 (1989)
https://doi.org/10.1063/1.455855

Resonance Raman scattering and optical absorption studies of CdSe microclusters at high pressure
A. P. Alivisatos, T. D. Harris, L. E. Brus, A. Jayaraman
J. Chem. Phys. 89, 5979–5982 (1988)
https://doi.org/10.1063/1.455466

Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum
A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, L. E. Brus
J. Chem. Phys. 89, 4001–4011 (1988)
https://doi.org/10.1063/1.454833

Saturation and nonlinear electromagnetic field effects in the picosecond resonance Raman spectra of β‐carotene
P. J. Carroll, L. E. Brus
J. Chem. Phys. 86, 6584–6590 (1987)
https://doi.org/10.1063/1.452404

Higher excited electronic states in clusters of ZnSe, CdSe, and ZnS: Spin‐orbit, vibronic, and relaxation phenomena
N. Chestnoy, R. Hull, L. E. Brus
J. Chem. Phys. 85, 2237–2242 (1986)
https://doi.org/10.1063/1.451119

Hybrid electronic properties between the molecular and solid state limits: Lead sulfide and silver halide crystallites
R. Rossetti, R. Hull, J. M. Gibson, L. E. Brus
J. Chem. Phys. 83, 1406–1410 (1985)
https://doi.org/10.1063/1.449407

Excited electronic states and optical spectra of ZnS and CdS crystallites in the ≊15 to 50 Å size range: Evolution from molecular to bulk semiconducting properties
R. Rossetti, R. Hull, J. M. Gibson, L. E. Brus
J. Chem. Phys. 82, 552–559 (1985)
https://doi.org/10.1063/1.448727

Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state
L. E. Brus
J. Chem. Phys. 80, 4403–4409 (1984)
https://doi.org/10.1063/1.447218

Size effects in the excited electronic states of small colloidal CdS crystallites
R. Rossetti, J. L. Ellison, J. M. Gibson, L. E. Brus
J. Chem. Phys. 80, 4464–4469 (1984)
https://doi.org/10.1063/1.447228

A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites
L. E. Brus
J. Chem. Phys. 79, 5566–5571 (1983)
https://doi.org/10.1063/1.445676

Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution
R. Rossetti, S. Nakahara, L. E. Brus
J. Chem. Phys. 79, 1086–1088 (1983)
https://doi.org/10.1063/1.445834

The resonance Raman spectra of aqueous phenoxy and phenoxy‐d5 radicals
S. M. Beck, L. E. Brus
J. Chem. Phys. 76, 4700–4704 (1982)
https://doi.org/10.1063/1.442786

Time resolved energy transfer from electronically excited 3B3u pyrazine molecules to planar Ag and Au surfaces
R. Rossetti, L. E. Brus
J. Chem. Phys. 76, 1146–1149 (1982)
https://doi.org/10.1063/1.443083

Transient spontaneous Raman observation of the reaction dynamics of triplet quinoxaline in aqueous solution
S. M. Beck, L. E. Brus
J. Chem. Phys. 75, 4934–4940 (1981)
https://doi.org/10.1063/1.441933

Theoretical model for enhanced photochemistry on rough surfaces
Abraham Nitzan, L. E. Brus
J. Chem. Phys. 75, 2205–2214 (1981)
https://doi.org/10.1063/1.442333

Enhanced sensitivity of transient spontaneous Raman scattering in micellar solutions
S. M. Beck, L. E. Brus
J. Chem. Phys. 75, 1031–1033 (1981)
https://doi.org/10.1063/1.442066

Can photochemistry be enhanced on rough surfaces?
Abraham Nitzan, L. E. Brus
J. Chem. Phys. 74, 5321–5322 (1981)
https://doi.org/10.1063/1.441699

Long range vibrational energy transfer to dielectric surfaces
L. E. Brus
J. Chem. Phys. 74, 737–743 (1981)
https://doi.org/10.1063/1.440786

On the ionization potential of small metal and dielectric particles
Guy Makov, Abraham Nitzan, Louis E. Brus
J. Chem. Phys. 88, 5076–5085 (1988)
https://doi.org/10.1063/1.454661

 

Articles by Alexei I. Ekimov

Role of a Single Dopant in Binary and Ternary Nanocrystals
Rameshwar N. Bhargava, Vishal Chhabra, Alexei I. Ekimov, Adosh Mehta
AIP Conf. Proc. 893, 1053–1054 (2007)
https://doi.org/10.1063/1.2730259

Hole-filling of persistent spectral holes in the excitonic absorption band of CuBr quantum dots
J. Valenta, J. Moniatte, P. Gilliot, R. Levy, B. Hönerlage, A. I. Ekimov
Appl. Phys. Lett. 70, 680–682 (1997)
https://doi.org/10.1063/1.118273

Time‐resolved measurements of carrier recombination in experimental semiconductor‐doped glasses: Confirmation of the role of Auger recombination
M. Ghanassi, M. C. Schanne‐Klein, F. Hache, A. I. Ekimov, D. Ricard, C. Flytzanis
Appl. Phys. Lett. 62, 78–80 (1993)
https://doi.org/10.1063/1.108833

Biographies

Moungi G. Bawendi

Moungi Bawendi was born in 1961 in Paris. He earned his A.B. from Harvard University in 1982 and an M.A. in 1983. He earned his doctorate in chemistry from the University of Chicago in 1988 under Takeshi Oka. Following his graduate studies, he worked as a postdoc at Bell Laboratories for two years. Bawendi began teaching at MIT in 1990, becoming Associate Professor in 1995, and Professor in 1996. He is currently the Lester Wolfe Professor of Chemistry at MIT, where his group studies the characteristics of quantum dots, including the dynamical properties of their electronic structure, charge transport properties, and spectroscopies. They are also concerned with studying the design of light emitters, lasers, photodetectors, and photovoltaics, which are driven by quantum dots.

Bawendi is a member of the American Chemical Society (ACS), from which he won the 2010 ACS Award in Colloid and Surface Chemistry and the 1997 Nobel Laureate Signature Award for Graduate Education in Chemistry. He is also a Fellow of the American Academy of Arts and Sciences, a member of the National Academy of Sciences, and a Fellow of the American Association for the Advancement of Science.

Louis E. Brus

Louis Brus was born in 1943 in Cleveland, Ohio. He attended Rice University on a Naval Reserves Officer Training Corps scholarship, earning his bachelor’s degree in 1965. He received his doctorate in physical chemistry in 1969 from Columbia University, working under Richard Bersohn. Following his graduate studies, he entered the Navy as a lieutenant and worked as a scientific staff officer at the U.S. Naval Research Laboratory. Brus then worked at Bell Laboratories from 1972 until 1996, when he moved to Columbia University, where he is currently the Samuel Latham Mitchill Professor Emeritus. It was while at Bell Laboratories that Brus began working on semiconducting nanocrystals which led to his research on quantum size effects and quantum dot chemical synthesis.

Among his many prizes are the Irving Langmuir Prize in Chemical Physics from the American Physical Society, the R.W. Wood Prize from Optica, the Chemistry of Materials Prize from the American Chemical Society, and the Kavli Prize in Nanoscience. He has also been elected to the National Academy of Sciences.

Alexei I. Ekimov

Alexei Ekimov was born in 1945 in the former USSR. He earned his bachelor’s degree in 1967 from Leningrad State University and his doctorate in 1974 from the Ioffe Physical-Technical Institute. In 1975, he was awarded the USSR State Prize in Science and Engineering for his dissertation work on electron spin orientation in semiconductors. Following his graduate studies, he worked at the Vavilov State Optical Institute. It was there that he researched semiconductor nanocrystals, leading to the discovery of quantum dots. Ekimov has also been a visiting professor at the École Polytechnique, the University of Lyon, the Max Planck Institute, and Osaka University. Since 1999, Ekimov has worked as the Chief Scientist at Nanocrystals Technology, Inc.

Ekimov has also been awarded the R.W. Wood Prize from Optica, the Alexander von Humboldt Award, and the Gross Medal of the Russian Rozhdestvensky Optical Society.