BEYOND REPRESENTATION: DATA TO IMPROVE THE SITUATION OF WOMEN AND MINORITIES IN PHYSICS AND ASTRONOMY

Rachel Ivie

Statistical Research Center

REPRESENTATION OF WOMEN

GIRLS AS A PERCENTAGE OF TOTAL ENROLLMENT IN HIGH SCHOOL PHYSICS

Representation of Female Students among Physics Students by Type of Course All US High Schools

* Includes data for both Physics First and Conceptual Physics for 2009; Physics First data was not collected separately in 1993
http://www.aip.org/statistics

Percent of Physics Bachelors and PhDs earned by Women, Classes of 1976 through 2016.

Number of Bachelor's Degrees Earned in Physics, Classes 1981 through 2016.

A|P | American Institute of Physics

Number of PhDs Earned in Physics 1972-2016.

Percent of Bachelor's Degrees Earned by Women in Selected Fields,

 Classes 1980 through 2015.

National Center for Education Statistics. Compiled by AIP Statistical Research Center.

Percent of PhDs Earned by Women in Selected Fields,

 Classes 1980 through 2015.

AIP | American Institute of Physics

PERCENTAGE OF PHYSICS FACULTY MEMBERS WHO ARE WOMEN

	2002	$\mathbf{2 0 0 6}$	2010	2014
RANK				
FULL PROFESSOR	5	6	8	10
ASSOCIATE PROF	11	14	15	18
ASSISTANT PROF	16	17	22	23
INSTRUCTOR/ADJUNCT	16	19	21	23
OTHER RANKS	15	12	18	20
HIGHEST DEGREE OFFERED				
PHD	7	10	12	14
MASTER'S	13	15	15	18
BACHELOR'S	14	15	17	20
OVERALL		$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 4}$

PHD-GRANTING PHYSICS DEPARTMENTS BY NUMBER OF WOMEN FACULTY MEMBERS IN PROFESSORIAL RANKS

UNDER-REPRESENTED MINORITIES

AIP | American Institute of Physics

Proportion of Students Taking High School Physics in the US in Each Racial/Ethnic Group

A closer examination of the data reveals that these differences are likely driven more by socioeconomic factors than by race.

RACE AND ETHNICITY OF PHYSICS BACHELORS CLASSES OF 2014 THROUGH 2016
 (3-YEAR AVERAGE)

White	Number	Percent of all Physics Bachelors
Asian American	5,943	74
Hispanic American	551	7
African American	518	7
Other US citizens	253	3
Non-US citizens	166	2
Total	575	7

NUMBER OF PHYSICS BACHELOR’S DEGREES EARNED BY AFRICAN-AMERICANS AND HISPANIC-AMERICANS

RACE AND ETHNICITY OF PHYSICS PHDS, CLASSES OF 2014 THROUGH 2016
 (3-YEAR AVERAGE)

	Number	Percent of all Physics PhDs	Percent of U.S. Physics PhDs*
White	843	46	87
Asian American	57	3	6
Hispanic American	38	2	4
African American	16	1	2
Other US citizens	12	1	1
Non-US citizens	861	47	-
Total	1,827	100	100

*Based on a 3-year average of 966 US citizens.

NUMBER OF PHYSICS DOCTORATES EARNED BY AFRICAN-AMERICANS AND HISPANIC-AMERICANS

RACE AND ETHNICITY OF PHYSICS FACULTY MEMBERS

	Physics				
	2004 $(\%)$	2008 $(\%)$	2012 $(\%)$	2016 $(\%)$	2015 $(\%)$
African-American	2	2.2	2.1	2.5	6
Asian	10.6	13.2	14.3	15.2	10
Hispanic	2.7	3.1	3.2	3.8	4
White	82.2	80	79.2	76.3	77
Other	2.2	1.5	1.2	2.3	<2

*Data for all disciplines (including non-science disciplines) is located at:
https://nces.ed.gov/fastfacts/display.asp?id=61

NUMBER OF AFRICAN-AMERICAN AND HISPANIC PHYSICS FACULTY BY HIGHEST DEGREE AWARDED BY DEPARTMENT

NUMBER OF WOMEN IN PHYSICS AND ASTRONOMY DEPARTMENTS BY HIGHEST DEGREE AWARDED

NUMBER OF PHYSICS DEPARTMENTS WITH AFRICANAMERICAN AND HISPANIC FACULTY BY HIGHEST DEGREE AWARDED, 2016

Number of Departments that have ...	PhD	Master's	Bachelor's	Total
Both African- American and Hispanic Faculty	25	7	3	45
African-American Faculty and no Hispanic Faculty	25	8	53	86
Hispanic Faculty and no African-American Faculty	75	20	61	156
Neither African- American nor	76	22	365	463
Hispanic Faculty	202	56	492	750

WILL INCREASING REPRESENTATION FIX EVERYTHING?

- Data should be collected on other important areas
- Workplace environment
- Salary
- Even with equal representation, some groups could have limited access to resources and opportunities

PHD+10 (TO 15) STUDY

- PhD classes of 1996, 1997, 2000, \& 2001
- Who lived in the US during 2011
- 1,544 respondents
- 45\% response rate
- Salary regression showed that men make more than women
- ~6\% more ($p=0.025$)
- Controlling for employment sector, time since degree, whether respondent had stayed with same employer, whether or not respondent had take a postdoc, highest degree the department offers (academic only)

Global survey of Physicists, 2009-2010

- About 15,000 respondents from 130 countries
- Conducted in 8 languages
- Separate results for Canada https://www.aip.org/statistics/reports/there-land-equality-physicists

AIP | American Institute of Physics

Percentage of respondents with access to key resources

	Less Developed		Very Highly Developed	
	Women	Men	Women	Men
Funding	34	51	52	60
Office space	64	74	72	77
Lab space	42	47	46	52
Equipment	42	49	58	64
Travel money	31	47	57	64
Clerical support	22	38	30	43
Employees or students	42	53	33	43

\% of R's w/ career-advancing opportunities

\% Yes	Less Developed		Very Highly Developed	
	Women	Men	Women	Men
Given a talk at a conference as an invited speaker	51	67	58	73
Attended a conference abroad	75	81	83	87
Conducted research abroad	54	71	61	69
Acted as a boss or manager	38	53	46	61
Served as editor of a journal	16	24	11	19
Served on committees for grant agencies	22	37	26	36
Served on important committees at your institute or company	50	62	48	60
Served on an organizing committee for a conference in your field	48	59	48	55
Advised undergraduate students	82	84	69	74
Advised graduate students	63	77	58	70
Served on thesis or dissertation committees (not as an advisor)	52	66	37	52

Global Survey of Physicists

A|P | American Institute of Physics

Relationship between career progress and resources

\section*{Relationship between career progress and opportunities
 | | 0% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

AIP | American Institute of Physics

AIP | American Institute of Physics

Compared to colleagues, how quickly have you progressed in your career?

IMPORTANCE

Documenting gender differences in salaries and access to opportunities and resources can result in policy changes.

LONGITUDINAL STUDY OF ASTRONOMY GRADUATE STUDENTS

- Result of Women in Astronomy Conference, 2003 in California, USA
- At that time, about 60% of younger members were women, and AAS wanted to know outcomes for these members.
- Would women have a higher attrition rate? Are women more likely to leave the field? If so, why?

LONGITUDINAL STUDY OF
 ASTRONOMY GRADUATE STUDENTS

- Partnership between American Institute of Physics and American Astronomical Society (AAS)
- Includes everyone who was in graduate school in astronomy or astrophysics in the US, 2006-07
- Data have been collected from the same cohort of people in order to document individual career paths
- Three waves of data have been collected:
- 2007-08
- 2012-13 five years later
- 2015-16 eight years later

THIS ANALYSIS

- Second survey
- limited to people who
- completed PhDs at the time of the $2^{\text {nd }}$ survey
- were not postdocs at the time of the surveys

HYPOTHESIS

We hypothesized that women would be more likely to work outside of astronomy and physics. In other words, being female would have a direct effect on leaving the field, independent of other factors.

IS WORKING IN OR OUT OF FIELD AFFECTED BY

- Being male or female (40% female respondents)
- Taking a postdoc
- Two-body problem (a work/family balance problem that refers to the difficulty of finding 2 jobs in same geographic area)
- Having a mentor other than advisor
- Relationship with advisor
- Imposter syndrome (at time of first survey)
- Time since degree

SECOND SURVEY
 DOES BEING MALE OR FEMALE INDEPENDENTLY AFFECT OTHER VARIABLES IN MODEL?

SECOND SURVEY FACTORS THAT INFLUENCE WORKING OUT OF FIELD

ANOTHER HYPOTHESIS

- There may be indirect effects of gender on working out of field.
- In other words, women may be more likely to have experiences that increase the likelihood of working out of field.

SECOND SURVEY TESTING INDIRECT EFFECTS OF GENDER EXAMPLE OF ONE MODEL

SECOND SURVEY
 THE INDIRECT EFFECT OF GENDER ON WORKING OUT OF FIELD

CONCLUSIONS FROM SECOND SURVEY

- We hypothesized that women would be more likely to work outside of astronomy and physics. In other words, being female would have a direct effect on leaving the field, independent of other factors.
- However, there is no direct effect of being female on working outside the field. The effect of being female comes through other factors.
- Women may be more likely to leave astronomy because
- Women are more likely to report less than satisfactory advising.
- Women are more likely to report two-body problems related to the need to find two jobs in the same geographic area for a spouse or partner.

Thanks to my colleagues Susan White and Patrick Mulvey

For more information

Rachel Ivie
Director
Statistical Research Center
301-209-3081
rivie@aip.org

