Radiation chemistry

Interviewed by
David Zierler
Interview date
Remote Interview

In this interview, David Zierler, Oral Historian for AIP, interviews Douglas Scalapino, Research Professor at UC Santa Barbara. Scalapino recounts his childhood in San Francisco and then Scarsdale, New York, he discusses the circumstances leading to his admission to Yale, and he describes how he settled on physics as an undergraduate after getting to know Professor Larry Biedenharn. Scalapino discusses his graduate research at Stanford, where he worked under the direction of Mitch Weissbluth conducting radiation chemistry using a small linear accelerator to see free radicals created by the electron beam. He describes his burgeoning interests in electronic spin resonance and magnetic resonance. Scalapino explains the circumstances leading to his decision to finish his thesis work with Ed Jaynes at Washington University while working for Kane Engineering. He discusses his postdoctoral research at the University of Pennsylvania with Bob Schrieffer and Henry Primakoff. He discusses his work at Bell Labs, where he worked with Phil Anderson, and he describes his first faculty position at Penn. Scalapino describes how UCSB recruited him, and he explains how his hire was part of a broader effort to raise the stature of the physics department. He recounts the virtues of working in a small department, where opportunities were available to collaborate with Bob Sugar and Ray Sawyer on high-energy physics, and Jim Hartle on astrophysics and general relativity. Scalapino describes the origins of the Institute of Theoretical Physics and how the National Science Foundation came to support UCSB’s proposal. He reflects on how the ITP has benefited the department of physics over the years, and he provides an overview of his research agenda at UCSB, which includes his contributions to the quantum Monte Carlo project and high-Tc and unconventional superconductors. At the end of the interview, Scalapino discusses his current interests in the numerical simulation of quantum many body systems.