Clean energy

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Cherry Murray, Professor of Physics and Deputy Director of Research at Biosphere 2 at the University of Arizona. She describes some of the logistical challenges in managing Biosphere 2 during the pandemic, and she considers how current political and environmental crises perhaps make the research at Biosphere 2 all the more urgently needed. Murray reflects on how her work at the DOE has been an asset for Biosphere 2 and she recounts her early childhood, first in Japan and then Pakistan during her father’s postings for the Foreign Service. She describes her high school education in Virginia and then South Korea and the opportunities that led to her undergraduate admission at MIT, where she became close with Millie Dresselhaus. Murray explains her decision to remain at MIT for graduate work to conduct research in surface physics under the direction of Tom Greytak. She discusses her subsequent work at Bell Labs on negative positron work functions and where she rose to become Vice President, and she provides context for some of the exciting developments in superconductivity. Murray explains the circumstances and impact of the breakup of Bell Labs, and she reflects on her contributions on surface enhanced Raman scattering during her tenure. She discusses her work with Ernest Moniz, the circumstances of her being named Deputy Director for Science and Technology at Livermore Lab, she describes her tenure at Harvard and the development of the Division of Engineering and Applied Sciences, and her experiences as Commissioner of the BP Deepwater Horizon Oil Spill. At the end of the interview, Murray discusses the development of Biosphere 2, some of its early stumbles, and the vast research value it promises for the long term.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Vyacheslav Romanov, Research Physical Scientist at the National Energy Technology Laboratory. Romanov recounts his upbringing in the Urals region of the Soviet Union, and he describes his education at a special high school for gifted students in Moscow. He explains the circumstances that led to his enrollment at the Moscow Institute of Physics and Technology for graduate school and his dawning realization that one can make sense of the world through physics. Romanov discusses his thesis research on the kinetics of light-matter interactions, and he describes his postgraduate work for the Soviet Space Program to develop thin film solar cells to power the International Space Station. He discusses the collapse of science funding after the breakup of the USSR and the opportunity he saw to emigrate to the United States at part of the Symposium on Diplomacy and Global Affairs in Washington, D.C. Romanov explains why he got an MBA from Waynesburg College and how this program put him on the path to U.S. citizenship. After a stint in the materials science industry, he describes his PhD research in physical chemistry and spectroscopy at the University of Pittsburgh, and how this led to his employment at NETL, first as a postdoc and then as a full-time employee. Romanov explains his initial work in geology and data analysis, his subsequent work in optimizing power plant generation, and his current research in reducing the environmental footprint of energy systems with machine learning. He describes the political and economic ramifications of his research, and he explains why carbon-based energy is central to the transition to a de-carbonized future, which, he asserts, will take decades to realize. At the end of the interview, Romanov explains why global efforts to mitigate environmental energy problems must rely on successful cooperation between the U.S. and China. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Ellen D. Williams, Director of the Earth System Science Interdisciplinary Center and Distinguished University Professor at the University of Maryland. Williams recounts her childhood in Michigan, and the benefits that she enjoyed growing up during the height of the U.S. car manufacturing era. She discusses her undergraduate education at Michigan State where she developed an interest in physical chemistry and become involved in women’s rights issues. Williams explains her decision to attend Caltech for graduate school, where she conducted thesis research on the statistical mechanics of surfaces using electron diffraction. She describes the opportunities leading to her appointment in physics and astronomy at Maryland, and she explains the transition from chemistry to a physics department, which was smoothed by the fact that her research focused on phase transitions and critical phenomena. Williams describes achieving tenure and her work within the Institute for Physical Science and Technology. She explains her research in scanning tunneling microscopes and nanotechnologies, and her increasing fluency in working with government funding agencies. Williams explains her decision to join BP as chief scientist where she was involved in fostering BP’s commitment to sustainability, and she describes Ernest Moniz’s offer for her to direct ARPA-E at DOE during the second term of the Obama administration. She conveys her enjoyment working in such a focused manner on clean energy in this role and her contributions to the Paris Climate Accord. Williams describes returning to Maryland and explains the most efficacious way of teaching students about both the science and policy implications of climate change. At the end of the interview, Williams discusses her work as director of the Earth Systems Science Interdisciplinary Center and the ongoing governmental collaborations this position allows, and she offers optimism that we have both the technological and political tools to mitigate climate change effectively.