Interview with Savas Dimopoulos, Professor of Physics at Stanford University. The interview begins with Dimopoulos reflecting on how the pandemic has affected his research, and he gives his initial impressions on the g-2 muon anomaly experiment at Fermilab. He discusses the push and pull between theory and experimentation when searching for physics beyond the Standard Model. Dimopoulos then recounts his early childhood in Turkey, where his family was part of the Greek minority. Due to ethnic tensions, he fled with his family to Athens as refugees. Dimopoulos remembers his early exposure to math and physics and being torn between the two. He describes moving to the US at age 18 for his undergraduate studies at University of Houston. Dimopoulos then recounts his inclination toward theory and his acceptance at University of Chicago to pursue his graduate studies under Yoichiro Nambu. He discusses his post-doctoral appointment at Columbia which then led to an offer from Stanford. He explains his research in baryogenesis and technicolor, as well as his brief time at Harvard with Howard Georgi. Dimopoulos talks about his return to Stanford, his work at CERN, and his research on large extra dimensions with Dvali and Arkani-Hamed. He concludes the interview with predictions for the future of physics beyond the Standard Model.
Interview with Herman B. White, physicist at Fermi National Accelerator Laboratory. White recounts his childhood in Tuskegee, Alabama and growing up during segregation. He discusses his early interests in science and his decision to enroll at Earlham College in Indiana as an undergraduate. White then describes his time at Michigan State University as a graduate student, during which he also held a position as a resident research associate at Argonne National Laboratory. Dr. White talks about his transition from nuclear physics to particle physics upon completing his master’s degree at MSU. He discusses the events that led him to accept a position at Fermilab rather than immediately pursue a PhD. White was the first African-American scientist appointed at Fermilab, and he recounts his early years there being mentored by Raymond Stefanski. He then describes his research fellowship at Yale and his non-traditional path to getting a PhD in 1991 from Florida State University. White talks about returning to Fermilab to work on kaon physics, and his eventual involvement in the Tevatron experiment. Toward the end of the interview, White reflects on the changes and trends he has seen in the research being done at Fermilab over the years, as well as his involvement in the National Society of Black Physicists.
In this interview, Peter McIntyre, Mitchell-Heep professor of experimental physics at Texas A&M University, and president of Accelerator Technology Corporation discusses his career and achievements as a professor. McIntyre recounts his childhood in Florida, and he explains his decision to pursue physics as an undergraduate at the University of Chicago and the influence of his longtime hero Enrico Fermi. He discusses his interests in experimental physics and he explains his decision to stay at Chicago for graduate school, where he worked with Val Teledgi, during a time he describes as the last days of bubble chamber physics. McIntyre conveys his intense opposition to the Vietnam War and the extreme lengths he took to avoid being drafted, and his dissertation work on the Ramsey resonance in zero field. He describes Telegdi’s encouragement for him to pursue postdoctoral research at CERN where he worked with Carlo Rubbia on the Intersecting Storage Rings project. He describes his time as an assistant professor at Harvard and his work at Fermilab, and the significance of his research which disproved Liouville’s theorem. McIntyre describes the series of events leading to his tenure at Texas A&M, and he explains how his hire fit into a larger plan to expand improve the physics program there. He discusses the completion of the Tevatron at Fermilab and the early hopes for the discovery of the mass scale of the Higgs boson, and he describes the origins of the SSC project in Texas and the mutually exclusive possibility that Congress would fund the International Space Station instead. McIntyre describes the key budgetary shortfalls that essentially doomed the SSC from the start, his efforts in Washington to keep the project viable, and the technical shortcomings stemming from miscommunication and stove-piping of expertise. He describes his involvement in the discovery of the top quark and the fundamental importance of the CDF, DZero, and ATLAS collaborations. McIntyre discusses his achievements as a teacher to undergraduates and a mentor to graduate students, and he assesses the current and future prospects for ongoing discovery in high energy physics. At the end of the interview, McIntyre describes his current wide-ranging research interests, including his efforts to improve the entire diagnostic infrastructure in screening and early detection of breast cancer.
Interview with Nan Phinney, retired Distinguished Staff Scientist at SLAC. Phinney recounts her childhood in Chicago and her education in Catholic private schools. She describes her undergraduate education at Michigan State where she majored in physics – despite being discouraged by many men that this was not an appropriate field of study for women. Phinney describes the excitement and benefits of focusing on particle physics during such a fundamental era of discovery and she explains her decision to pursue a Ph.D. in physics with Jack Smith at Stony Brook. She discusses her involvement in efforts to discover the Z boson, and she describes her work at CERN. Phinney describes her interest in linear colliders and the circumstances leading to her employment at SLAC. She discusses her initial work on the control system for the SLC and explains how networking issues presented the biggest technical challenge for the project. Phinney describes the international culture of collaboration with projects at CERN and DESY, and she explains the impact of the B factory at SLAC. She discusses her role in the creation of the NLC and the mechanical breakdown leading to the end of the SLC. Phinney describes the origins of the ILC and some of the significant developments in superconductivity in the early 2000s. At the end of the interview, Phinney describes current research on electron-positron colliders, she discusses her work with the APS, and she explains how SLAC has changed both culturally and scientifically over the decades.
Interview with Paul Emma, retired and formerly Senior Staff Scientist at SLAC. Emma recounts his childhood in Illinois, and he describes his undergraduate work at Western Washington University in Bellingham. He explains why he left WWU early to accept an opportunity for graduate work at Caltech briefly before accepting a job at Fermilab where he worked in operations on the Main Ring and the Tevatron project. He describes the series of events leading to his work at SLAC, where he worked in operations and design on the LCLS, the SLC, and the NLC. Emma describes his work for the superconducting undulator for Argonne and Lawrence Berkeley Laboratories, and at the end of the interview he discusses his ongoing work on LCLS-II.
Interview with Wick Haxton, professor of physics at UC Berkeley. Haxton recounts his childhood in Santa Cruz and his early interests in math and science. He describes his undergraduate education at the newly created UC Santa Cruz where his initial interest was in mathematics before he was given the advice that he did “mathematics like a physicist.” Haxton discusses his graduate work at Stanford where his original intent was to study general relativity before he connected with Dirk Walecka and Bill Donnelly to focus on nuclear theory and dense nuclear matter. He discusses his postdoctoral research at the University of Mainz where he concentrated on photo-pion physics during the early days of chiral perturbation theory, and he explains the opportunities that led to his next appointment at the LAMPF facility at Los Alamos. Haxton emphasizes the excellence of both his colleagues and the computational capacity at the Lab, and he describes his faculty appointment at Purdue and the solar neutrino experiment he contributed to in Colorado. He explains the opportunities that led to him joining the faculty at the University of Washington where the DOE was about to fund the Institute for Nuclear Theory. Haxton explains the “breakup” between nuclear theory and particle theory and how the INT addressed that. Haxton discusses the opportunities afforded at the INT to engage in nuclear astrophysics and he explains the rise and fall of the Homestake DUSEL project. He explains his decision to go emeritus at UW and to join the faculty at UC Berkeley and to be dual hatted at the Berkeley Lab, and he describes his tenure as department chair. At the end of the interview, Haxton describes his current work organizing the new Physics Frontier Center and the challenges presented by the pandemic, and he credits his formative time as Los Alamos for the diverse research agenda he has pursued throughout his career.
Interview with Melissa Franklin, Mallinckrodt Professor of Physics at Harvard. Franklin notes her affiliation with the ATLAS experiment, and she discusses the importance of remote data analysis from CERN which is possible in the current mandates of remote work. Franklin recounts her childhood in Edmonton, then Vancouver, and then Toronto, and she discusses the alternative educational experiences she pursued through high school. She describes her undergraduate experience at the University of Toronto and her decision to study physics and the summers she spent at Fermilab making a tagged photon beam. Franklin discusses her graduate work at Stanford, where she was motivated to work at SLAC with Martin Perl and then Gary Feldman. She describes her postdoctoral appointment at Berkeley working on an experiment at Fermilab, and her decision to join the faculty at the University of Illinois before accepting an offer to become a junior fellow and then an assistant professor at Harvard. Franklin describes her work on the CDF at Fermilab and measuring the mass of the W and the Z, and she surveys her style as a mentor to graduate students. She explains how she became involved with ATLAS and her interest in fundamental questions like the possible coupling of the Higgs to dark matter. Franklin describes her efforts to make the Harvard physics department a more caring place for postdocs, graduate students and support staff, and why she believes physics education research needs to be more rigorously incorporated at the department level. At the end of the interview, Franklin reflects on the significance of the discovery of the top quark, and she conveys her ambition to build a very small accelerator with a very high energy.
Interview with Carl Haber, Senior Staff Scientist at Lawrence Berkeley National Laboratory. Haber explains where his research fits within the broader matrix of the Lab, and he describes the challenges with remote work during the pandemic. He recounts his childhood in Queens, NY, and his early fascination with the Space Race. Haber describes his undergraduate work at Columbia, where he became interested in experimental physics and where he worked in Madame Wu’s group. He explains his decision to stay at Columbia for graduate school, his work targeting neutrinos at Fermilab, and a formative visit to SLAC. Haber discusses his postdoctoral research at the Tevatron collider and some of the technical challenges in building calorimeter devices. He describes the origins of CDF, and the focused interest on CERN for collider detectors, and he shares how he felt when the Higgs was discovered. Haber describes his entrée into the physics of audio recordings, and how he sees this work as part of his research agenda. At the end of the interview, Haber explains why he can’t conceive of a better place than Berkeley to pursue a career in physics.