Computer science

Interviewed by
David Zierler
Interview date
Location
Teleconference
Abstract

Interview with Stephen Williams, formerly Assistant Research Director of SLAC. Williams describes his connections with SLAC since his retirement in 2011, and he recounts his childhood in Michigan and his early fascination with electronics. He explains his reasons for attending the University of Michigan, where he majored in physics and where he determined he would go to UC Berkeley for graduate school to work with Victor Perez-Mendez on magneto-strictive readouts for wire spark chambers. Williams discusses his postdoctoral work at SLAC working with David Leith, and his subsequent research on head coils and software in nuclear medicine at UCSF. He describes the research mission of Group B at SLAC and the Cherenkov technique, and the opportunities that led him his management position as director of engineering and as an engineering manager for Diasonics. Williams describes the change in leadership from Burt Richter to Jonathan Dorfan, and the circumstances of becoming as Acting Research Director. He discusses the safety protocols that needed to be improved in consultation with the DOE, and at the end of the interview, Williams reflects on the ways SLAC has stayed true to Panofsky’s original vision.

Interviewed by
Jennifer Lentz
Interview date
Location
Indiana University, Bloomington, Indiana
Abstract

Interview with Diane Kewley-Port, Professor Emeritus at Indiana University in the Speech and Hearing Department. Kewley-Port recounts her involvement in the Acoustical Society of America over the years, including serving as Chair of the Speech Technical Committee, member of the Executive Council, and Vice President. She describes her childhood in Cleveland and her early interest in science and engineering. Kewley-Port then discusses her undergrad and graduate years at University of Michigan, as well as the year she spent working in Denmark for a Danish computer company. She also talks about her time as a research assistant in the Neurocommunications Lab at Johns Hopkins, as well as at Haskins Laboratories, before pursuing her PhD at City University of New York. Kewley-Port reflects on how important ASA has been throughout her career, especially the mentorship and support she has received. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Peter W. Shor, Morss Professor of Applied Math at MIT. Shor recounts his childhood in Brooklyn and then Washington, DC, and he describes his discovery early in childhood that he had a special aptitude in math. He describes his undergraduate experience at Caltech, where he pursued an interest in combinatronics, and he explains his decision to attend MIT for graduate school, where he studied under Tom Leighton. Shor discusses his graduate work at Bell Labs and he explains how applied math research was relevant to Bell's business model. He describes his thesis research which used math to design good algorithms for computer problem solving, and he discusses his postdoctoral research at the Mathematical Science Research Institute at Berkeley where he focused on computational geometry problems. Shor explains his decision to return to Bell Labs and his focus on optical fibers, and he explains Google's influence in achieving breakthroughs in theoretical computer science. He describes the origins of Shor's Algorithm and Charles Bennett's involvement in this development. Shor explains when true quantum computing became theoretically feasible, and the various budgetary, theoretical, and political challenges that stand between the current state of play and quantum computer realization. He explains his interest in returning to academia at the time Bell Labs was coming apart, and he explains his contributions to advancing quantum information and the utility this has for AdS/CFT research. Shor describes his current interest in black holes and quantum money, and at the end of the interview, he explains why the question of whether NP = P remains fundamental.

Interviewed by
David Zierler
Interview dates
June 29, July 5, July 19, July 26, August 2, August 9, August 16, 2020
Location
Video conference
Abstract

Series of seven interview sessions with Carver Mead, Gordon and Betty Moore Professor Emeritus at Caltech. Mead recounts his childhood in California, and he describes the impact of watching his father’s career in the electric power industry. He credits his schoolteachers for encouraging his early interests in math and science, and he explains why attending Caltech as an undergraduate was an easy choice for him because he felt immediately welcomed during his first visit. He describes what it was like to learn quantum mechanics from Linus Pauling, and he explains that his decision to major in electrical engineering stemmed from the fact that applied physics was shunned in the physics department because Murray Gell-Mann referred to it as “squalid state physics.” Mead describes his decision to stay at Caltech for graduate school, and he explains how he became interested in semiconductors and transistors and what would become the origins of “device physics” and how his dissertation research contributed to these developments. He describes his developing understanding that the future of electronics would be in low power, high-performance devices and why he would be best positioned to foster this future as a faculty member at Caltech. Mead describes his collaborations and interest in industry labs including IBM, RCA, and Bell, and he describes his initial and then longtime work with Gordon Moore. He discusses the value of RF transmitters in 1960s-era communications technology and the prospects of satellite telecommunications at the dawn of the space age. Mead describes the origins of VSLI technology, word processors, and microcomputers, and he describes his collaboration with Lynn Conway and the process that went into the classic textbook they coauthored. He describes his research using the human mind as a source of inspiration to push electronics and microprocessors to the next level, and he explains the value of bouncing ideas off of Feynman over lunch. Mead describes the singular potential of his student and collaborator Misha Mahowald, and the value of his work with Arnold Beckman. He discusses the several companies that were spun out of his research in electronics and biophysics, and he describes his work on cameras with Michihiro Yamaki and the learning curve associated with research culture in Japan. Mead offers his perspective on the need to update the debates between Einstein and Bohr in the wake of recent developments in physics, and he explains the intellectual origins of his text Collective Electrodynamics. He explains why scientific debates can take on philosophical or even religious dynamics, and he discusses the origins of G4V and how to think of gravitational attraction as an analogy to electromagnetic interaction. Relatedly, Mead describes his work with Kip Thorne and his involvement with the LIGO endeavor, and he explains why the line between science and engineering is fuzzier than is commonly understood. He explains the significance of the Shapiro Delay, he surmises that the mystery of Dark Energy is sourced in the fact that physics is approaching the problem in the wrong way, and he explains why physics has become hamstrung in its pursuit of mathematizing physical reality ahead of experimental guidance. Mead explains that his views are rooted in his ability to think in pictures, as opposed to abstract symbols, and that the field needs to be more welcoming and inclusive to those who may see math as a barrier to working in physics at a high level. At the end of the interview, Mead describes his interest in current challenges with electric grid infrastructure, he explains why he has championed the work of women in science throughout his career, and he strikes an optimistic note that science always has and will continue, to provide solutions to the world’s most pressing problems.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Fred Goldberg discusses: impact of COVID-19 pandemic on physics education and teaching tools; Jewish heritage, religious, and cultural practices; undergraduate and graduate experience with Bill Williams at University of Michigan; time at West Virginia University; work with Charles Wales; sabbatical with Lillian McDermott at the University of Washington and the beginnings of physics education research (PER); first PER gathering at an American Association of Physics Teachers (AAPT) meeting; first successful NSF PER proposal; move to San Diego State University to be at the Center for Research on Math and Science Education (CRMSE); Arnold Arons and Alfred Bork’s computer software programs; experiences on the cutting edge of using computers to enhance physics learning; shift from focusing on individual learning to how student groups learn; NSF’s ongoing support for his work; the Constructing Physics Understanding (CPU) project; Physics and Everyday Thinking curriculum development; Next Generation Science Standards curriculum alignment; development of a faculty online learning community (FOLC) and the shift toward studying faculty change and support; role of AAPT; decline of general population’s ability to engage in evidence-based reasoning; and how his work helps teachers develop an informed citizenry. Toward the end of the interview, Goldberg reflects on the difficulties of trying to change the way faculty thinks about teaching and how his own ideas and interests have evolved over the years. He emphasizes the importance of issues of equity and inclusion in science education going forward.

Interviewed by
David Zierler
Interview dates
July 28, August 18, September 4 & 11, 2020
Location
Video conference
Abstract

Interview with William H. Press, Leslie Suringer Professor in Computer Science and Integrative Biology at the University of Texas at Austin. Press recounts his childhood in Pasadena and the influence of his father Frank Press, who was a prominent geophysicist, Caltech professor, and who would become science advisor to President Jimmy Carter. He describes the impact of Sputnik on his budding interests in science, and he discusses his undergraduate experience at Harvard, where Dan Kleppner, Norman Ramsey, Ed Purcell and Dick McCray were influential in his development, and where he realized he had an aptitude for applying abstract equations to understanding physical reality. Press describes trying his hand with experimentation in Gerald Holton’s high-pressure physics lab, he recounts his involvement in student activism in the late 1960s, and he discusses his involvement in computer hacking in its earliest form. He explains his decision to attend Caltech for graduate school and his interest in studying with Dick Feynman and Kip Thorne. Press describes the opportunity leading to his work at Lawrence Livermore, how he got involved with Thorne’s group of mathematical general relativists, the origins of Thorne’s work on gravitational waves, and his collaborations with Saul Teukolsky and Paul Schechter. He describes the formative influence of Chandrasekhar. Press discusses his first faculty position at Princeton where he joined John Wheeler’s relativity group, and he describes his research interests flowing more toward astrophysics. He explains the opportunities leading to his tenure at Harvard, where he was given separate appointments in physics and astronomy and where he founded theoretical astrophysics within the Center for Astrophysics. Press describes his entrée into science policy work in Washington with the NSF Physics Advisory Committee and then later on the National Academy of Science and the National Research Council, and he explains the origins of his long-term association with the JASON Study Group. He describes his interest in gravitational collapse, Ia supernovae and galaxy formation, and why the study of black holes reinvigorated the field of general relativity. Press describes the singular genius of Freeman Dyson, and he recounts his contributions to nuclear risk reduction in science policy and his service with the Defense Science Board and the Institute for Defense Analyses. He discusses his tenure as chair in Harvard’s Department of Astronomy, his experience with the Numerical Recipes books, and his collaboration with Adam Riess and Robert Kirshner. Press recounts his decision take a position at Los Alamos as Deputy Director to John Browne, he describes his education there in the concept of leadership which he never received in his academic career, and he provides his perspective on the Wen Ho Lee spy case and the existential crisis this caused at the Lab. He describes the Lab’s role in the early days of computational biology and how this field sparked his interest. Press contextualizes this interest within his conscious decision not to stay connected to astrophysics during his time at Los Alamos, and he explains the opportunity leading to him joining UT-Austin where he remains invested in computational biology. He describes his work for the President’s Council of Advisors in Science and Technology during the Obama administration, he describes Obama’s unique interest in science and science policy, and he narrates the difficulties in the transition to the Trump administration. Press reflects on what it means to be a member of the rarified group of scientists who did not win a Nobel Prize but who were advised by and taught scientists who did. At the end of the interview, Press explains that he has always been a dilettante, which has and will continue to inform how he devotes his time to science, service, and policy matter, and he advises young scientists to aspire to mastery in a specific discipline early in their career before branching out to new pursuits.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with John Regazzi, managing director of Akoya Capital. Regazzi provides a business executive’s perspective on the future of work after the pandemic, and he recounts his childhood in Brooklyn and his largely Catholic school education. Regazzi explains his initial interest in entering the seminary to become a priest before he decided to pursue a secular education in experimental psychology at St. John’s University. He discusses his graduate work in business at Columbia University and his developing interests in information science, which he developed at Northern Illinois University. Regazzi describes his subsequent work at the Foundation Center and then at Rutgers where he earned a PhD in information sciences. He explains how this research led to his career in publishing, first at the H.W. Wilson Company and then at Elsevier, where he rose to lead the company in New York. He narrates how and when digital media and the internet became central to the publishing industry, and he explains how he navigated these transitions. Regazzi describes his experiences on September 11 and the impact of this on Elsevier. He discusses his retirement, his decision to become a Dean at Long Island University, and his involvement with AIP and the key issue about making AIPP a separate organization. Regazzi describes his work as Chairman of the AIP board and the central work of finding a CEO. He explains why Michael Moloney became the successful candidate, and how Regazzi put his expertise in technical scientific publishing to the benefit of both AIP and AIPP. At the end of the interview, Regazzi reflects on his career and emphasizes the importance of identifying innovation in business, and he conveys optimism that the publishing industry will continue to evolve and adapt well into the future. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Norman Jouppi, Distinguished Hardware Engineer at Google. Jouppi provides an overview of the organizational hierarchy at Google and where he fits in, and he surveys the distinctions between applied physics, electrical engineering, and computer science. He recounts his childhood in suburban Chicago and his early interests in computers. He describes his undergraduate education at Northwestern where he pursued his interests in computer architecture. Jouppi discusses his graduate research at Stanford, and he reflects on the early days of startup culture in Silicon Valley. He explains the origins of MIPS and the influence of Jim Clark and John Hennessy and he describes his work for Silicon Graphics and his thesis research in CAD. Jouppi explains his decision to take his first postgraduate position at Digital Equipment Corporation and he describes the importance of VAX computing.  He explains the corporate transition from DEC to Compaq to HP, and he explains the origins internet browsing and the creation of Alta Vista. Jouppi explains the concept of telepresence and he discusses his responsibilities as director of the Advanced Architecture Lab. He explains the interest in exascale computing and his early work in artificial intelligence. Jouppi discusses his involvement in VLSI design and he explains the process that brought him to Google to work on platforms and TPU infrastructure. He reflects on how ML has changed over the years and he describes both the research and collaborative culture that Google promotes, and he explains why quantum computing is a completely different domain of computation. At the end of the interview, Jouppi considers how and when Moore’s Law will end, and he conveys his commitment to advancing technology that has a tangibly net-positive impact on society.