Electroweak interactions

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Sheldon Glashow, Professor of Physics Emeritus at Harvard University and Professor of Physics Emeritus at Boston University, reflects on his career and Nobel Prize winning work. He discusses his childhood friendship with Steve Weinberg and his passion for science from a young age. He reflects on his decision to attend Cornell University for undergrad and details the physics curriculum at the time. Glashow describes his time as a graduate student at Harvard University studying under Julian Schwinger. He discusses his time as a post-doc at the Institute for Theoretical Physics in Copenhagen working on the SU(2)XU(1) theory, which would later win him a Nobel prize in 1979. He speaks about working with Murray Gell-Mann while at Caltech and their collaboration on a paper together. Glashow details being hired as a full professor at Harvard University. He discusses his frequent collaboration with Alvaro De Rujula. He discusses the concept of string theory and how it has evolved over the years. He discusses the loss of the superconducting super collider and reflects on where particle and theoretical physics may be today had it been built. Lastly, Glashow reflects on his goals for "Inference: International Review of Science", of which he is the editor-at-large.

Interviewed by
David Zierler
Interview dates
February 26 and March 12, 2021
Location
Video conference
Abstract

Interview with John Preskill, Richard P. Feynman Professor of Theoretical Physics at Caltech, and Director of the Institute for Quantum Information and Matter at Caltech. Preskill describes the origins of IQIM as a research pivot from the initial excitement in the 1970s to move beyond Standard Model physics and to understand the origin of electroweak symmetry breaking. He emphasizes the importance of Shor’s algorithm and the significance of bringing Alexei Kitaev into the project. Preskill discusses the support he secured from the NSF and DARPA, and he recounts his childhood in Chicago and his captivation with the Space Race. He describes his undergraduate experience at Princeton and his relationship with Arthur Wightman and John Wheeler. Preskill explains his decision to pursue his thesis research at Harvard with the intention of working with Sidney Coleman, and he explains the circumstances that led to Steve Weinberg becoming his advisor. He discusses the earliest days of particle theorists applying their research to cosmological inquiry, his collaboration with Michael Peskin, and his interest in the connection of topology with particle physics. Preskill describes his research on magnetic monopoles, and the relevance of condensed matter theory for his interests. He explains the opportunities that led to his appointment to the Harvard Society of Fellows and his eventual faculty appointment at Harvard, his thesis work on technicolor, and the excitement surrounding inflation in the early 1980s. Preskill discusses the opportunities that led to his tenure at Caltech and why he started to think seriously about quantum information and questions relating to thermodynamic costs to computing. He explains the meaning of black hole information, the ideas at the foundation of Quantum Supremacy, and he narrates the famous story of the Thorne, Hawking, and Preskill bets. Preskill describes the advances in quantum research which compelled him to add “matter” to the original IQI project which was originally a purely theoretical endeavor. He discusses the fact that end uses for true quantum computing remain open questions, and he surveys IQIM’s developments over the past decade and the strategic partnerships he has pursued across academia, industry, and at the National Labs. Preskill surveys the potential value of quantum computing to help solve major cosmological mysteries, and why his recent students are captivated by machine learning. At the end of the interview, Preskill reflects on his intersecting interests and conveys optimism for future progress in understanding quantum gravity from laboratory experiments using quantum simulators and quantum gravity.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Marjorie Shapiro, Professor of Physics at UC Berkeley and Faculty Senior Scientist at Lawrence Berkeley National Laboratory. Shapiro describes the value of this dual affiliation and she surveys the current state of play at the LHC and its work on dark matter research, and what physics beyond the Standard Model might look like. She recounts her upbringing in Brooklyn and her father’s work as a medical physicist, and she explains the opportunities that led to her undergraduate admission at Harvard. Shapiro describes her immediate attraction to experimental particle physics and some of the challenges she faced as a woman. She explains her decision to go to Berkeley for graduate school, where the Lab was a specific draw and where she worked under the direction of Dave Nygren, whose group was working on the Time Projection Chamber. Shapiro describes her postdoctoral appointment back at Harvard to work on the CDF collaboration with Roy Schwitters, who was CDF spokesman at the time. She explains the exciting discoveries at Fermilab, her involvement in B physics, and the friendly competition with DZero. Shapiro explains that her first faculty appointment at Harvard was never something that she assumed would be long term, and the circumstances leading to her appointment at Berkeley. She explains Berkeley’s pivot to CERN following the cancellation of the SSC and the trajectory of the ATLAS program to study electroweak symmetry breaking, and she discusses her advisory work on HEPAP. Shapiro narrates the buildup and elation surrounding the discovery of the Higgs and she describes her accomplishments as the first woman to chair the Department of Physics at Berkeley. She discusses her post-Higgs concentration on SUSY and she explains that in addition to pursuing physics beyond the Standard Model and why the LHC data suggests that there remains much to be learned within the Standard Model. At the end of the interview, Shapiro explains why there remains fundamental unanswered questions on CP violation, and she explains why young physicists should pursue their research in the broadest possible way.