Nobel Prize winners

Interviewed by
David DeVorkin
Interview dates
March 19, 21, 22 & 26, 2024
Location
Video conference
Abstract

Interview with Russell Alan Hulse, American physicist and winner of the Nobel Prize in Physics. This is a four-part interview, and Hulse is joined by his wife, Jeanne Kuhlman, throughout. Kristen Frederick-Frost and Roger Sherman (Curators, Division of Medicine and Science, National Museum of American History) were also present for this interview. Part 1 covers Hulse’s childhood in the Bronx, his family life, and his early interest in science. Hulse discusses skipping a few grades in elementary school and being accepted at the Bronx High School of Science. He describes his time as a physics major at Cooper Union and his graduate studies at University of Massachusetts, where he studied radio astronomy with Joe Taylor. Hulse talks about his early experience with computers, programming, and his growing technical expertise. In Part 2, Hulse and Kuhlman discuss their relationship over the years and their common interest in science. Hulse goes into detail about his time at the Princeton Plasma Physics Lab, working on scientific computer modeling.  He also talks about his consulting work after earning the Nobel Prize. Part 3 of the interview covers Hulse’s time at UMass, building the radio astronomy program. He also discusses his work leading to the discovery of the binary pulsar. Part 4 focuses on Hulse’s outreach efforts, such as working with local public libraries and schools to promote science education, as well as his work at the University of Texas.

Interviewed by
David Zierler
Interview dates
May 18 & June 22, 2021
Location
Video conference
Abstract

Interview with Steven Chu, former United States Secretary of Energy and current Professor of Physics and Professor of Molecular and Cellular Physiology in the Medical School at Stanford University. Chu begins by taking us through his changing research interests across his time at Berkeley, Bell Labs and Stanford, and then recounts the beginnings of his interest in climate change in the early 2000s. He talks about his work advising companies who are working on climate change solutions such as carbon capture, and he gives an overview of the research and action being taken around renewable energy sources. Chu then goes back in time and recounts the story of his family, starting with his grandfather in China who emphasized education for all his children. Growing up in Nassau County, Chu describes feeling like a “disappointment” in his family because he didn’t go to an Ivy League school and instead completed his undergraduate studies in math and physics at the University of Rochester. Chu discusses his decision to attend Berkeley for grad school and meeting his advisor Eugene Commins, who was working on weak interactions. Then Chu recounts his transition to Bell Labs and describes the laser work going on there at the time, as well as his burgeoning interest in beta decay experiments. He talks about his research surrounding laser cooling and explains his decision to move to Stanford after Bell. Chu remembers his experience winning the Nobel Prize and accepting the position as director of Lawrence Berkeley National Lab. Chu ends the interview with stories from his time as Secretary of Energy under the Obama administration, such as his experiences with the Deepwater Horizon oil spill, setting up the DOE Loan Program Office, and his international work on climate change.

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
Beth Ann Williams
Interview date
Location
Video conference
Abstract

Interview with Sir Anthony Leggett, professor emeritus at the University of Illinois Urbana-Champaign (UIUC). Leggett begins with recollections from his childhood as the son of two schoolteachers. He discusses studying classics at Oxford and having minimal science or math education. Leggett explains that he contemplated pursuing graduate studies in philosophy, but he met a priest who taught him complex mathematics concepts, leading to his interest in physics. He describes obtaining his second undergraduate degree in physics from Oxford, as well as his graduate studies in theoretical condensed matter physics under Dirk ter Haar. Then Leggett recalls going to UIUC for a postdoc with David Pines and also to Japan to study with Takeo Matsubara. Leggett discusses his appointment at Sussex University and his shift from low temperature physics into quantum mechanics. He reflects on accepting the offer to move back to UIUC as the endowed MacArthur Chair, as well as what it was like to receive the call about winning the Nobel Prize. The interview ends with Leggett sharing advice for physics students and reflections on his time teaching in Ghana.

Interviewed by
David Zierler
Interview dates
June 15, July 8, July 29, August 19, September 8, 2020
Location
Video conference
Abstract

Interview with David Gross, Chancellor’s Chair Professor of Physics at University of California in Santa Barbara and a permanent member of the Kavli Institute of Theoretical Physics (KITP). Gross begins by describing his childhood in Arlington, Virginia and his family’s later move to Israel. This led to his decision to enroll at the Hebrew University of Jerusalem for his undergraduate studies in physics and mathematics. Gross recalls his acceptance at Berkeley for his graduate studies, where Geoffrey Chew became his advisor. He explains his early interests in strong interactions, quantum field theory, and S-matrix theory. Gross then describes taking a fellowship at Harvard after completing his PhD, where he recalls his early involvement in string theory. He speaks about his subsequent move to join the faculty at Princeton, as well as his introduction to Frank Wilczek, one of his first graduate students with whom he later shared the Nobel Prize. Gross takes us through the discovery of asymptotic freedom, the development of quantum chromodynamics, and the impact these had on the Standard Model. He discusses his decision to leave Princeton for UCSB, where he focused on growing the KITP and securing funding. Gross describes how his research interests have shifted over the years across topics such as confinement, quantum gravity, and more recently back to string theory. Toward the end of the interview, Gross speaks about his work to develop institutes similar to KITP in other countries, as well as his term as President of the American Physical Society in 2019.

Interviewed by
David Zierler
Interview date
Location
Teleconference
Abstract

In this interview, Saul Perlmutter, Professor of Physics at UC Berkeley and Staff Scientist and senior faculty member at Lawrence Berkeley National Laboratory, discusses his life and career. Perlmutter shares that his research has not been slowed down by the pandemic by happy coincidence that he is currently focused on remote data analysis, and he recounts his childhood in Philadelphia where he was educated in Quaker schools. He discusses his early fascination with quantum mechanics and his decision to go to Harvard for his undergraduate education, where he cemented his interests in experimental physics. Perlmutter explains his decision to go to Berkeley for graduate school, where he worked in Buford Price’s group before Richard Muller became his graduate advisor. He discusses his early awareness of the cosmic microwave background and how he became involved with robotic searches for supernovae. Perlmutter describes the importance of NASA’s BITNET program as a way to connect observatory data worldwide to the computer systems at Berkeley, and he explains the intellectual and observational connections between the inflation, expansion, and acceleration of the universe. He discusses his postdoctoral research at Berkeley, and the circumstances leading to him becoming leader of the supernova group and how the DOE became more involved in astrophysics funding. Perlmutter explains the group’s focus on deceleration and he conveys the difficulties in scheduling telescope time to demonstrate spectroscopy proof of type Ia supernovae. He describes the origins of the SNAP satellite project, some of the early theoretical discussions on the nature of dark energy, and when, finally, his group secured long-term support from the Lab. Perlmutter narrates his first interactions with Brian Schmidt and Adam Riess and he describes the batch technique that could predict the discovery of supernovae, which vastly improved the efficiency of scheduling time on large telescopes. He explains the role of dark matter in speeding up the universe’s expansion, and he narrates the celebration with his team when he won the Nobel Prize and how he has chosen the use the political platform that comes with this recognition. Perlmutter discusses his interest in studying climate change, and at the end of the interview, he conveys his excitement about future observational discovery in astrophysics and cosmology.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Barry Barish, Linde Professor of Physics Emeritus at Caltech, where he retains a collaboration with LIGO, and Distinguished Professor of Physics at UC Riverside. Barish recounts his childhood in Los Angeles and emphasizes that sports were more important than academics to him growing up. He explains his decision to attend Berkeley as an undergraduate, where his initial major was engineering before he realized that he really loved physics, and where he was advised by Owen Chamberlain. Barish describes the fundamental work being done at the Radiation Lab and how he learned to work the cyclotron. He explains why Fermi became his life-long hero and why he decided to stay at Berkeley for graduate school, even though the school’s general policy required students to pursue their doctoral work elsewhere. Barish describes his graduate research under the direction of Carl Hemholz, and he explains how he developed a relationship with Richard Feynman which led to his postdoc and ultimately, his faculty appointment at Caltech. He discusses how his interest in neutrinos led to his work at Fermilab and why the big question at the time was how to discover the W boson. Barish describes his key interests in magnetic monopoles and neutrino oscillations, and he describes his involvement with the SSC project through a connection with Maury Tigner at Berkeley, which developed over the course of his collaborations with Sam Ting. He explains that his subsequent work with LIGO never would have happened had the SSC been viable, and he describes his early connection as a young student learning general relativity as a connecting point to LIGO. Barish describes his general awareness of what Rai Weiss had been doing prior to 1994 and he relates the state of affairs of LIGO at that point. He conveys the intensity of his involvement from 1994 to 2005 and he describes the skepticism surrounding the entire endeavor and what success would have looked like without any assurance that the experiment would actually detect gravitational waves. Barish describes the road to detection as one of incremental improvements to the instrumentation achieved over several years, including the fundamental advance of active seismic isolation. He narrates the day of the detection, and he surveys the effect that the Nobel Prize has had on the LIGO collaboration and its future prospects. Barish notes the promise that AI offers for the future of LIGO, and he prognosticates the future viability of the ILC. At the end of the interview Barish explains what LIGO has taught us about the universe, and what questions it will allow us to ask in the future as a result of its success. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Donna Strickland, professor of physics and astronomy at the University of Waterloo. Strickland describes the challenges of operating an experimental laser lab during the pandemic, and she recounts her childhood in Nova Scotia, her early interests in science, and her decision to pursue an engineering physics degree at McMaster. She discusses the early influence of Brian Garside and her immediate interest in CO2 lasers. Strickland describes her graduate research at the University of Rochester where she worked with Gérard Morou, whose lab was pursuing shorter laser pulses. She narrates the origins of the CPA laser idea and explains some of the technical challenges in designing the CPA system. Strickland discusses the opportunity to work at the NRC with Paul Corkum and then her subsequent position at Livermore before she joined a research group at Princeton. She describes securing her first full time faculty position at Waterloo and her interest in coherent control of molecules and why she enjoys two color lasers. Strickland describes her service work for the OSA, and she narrates how she never noticed the “buzz” leading up to the announcement that she won the Nobel Prize. She emphasizes the importance of Steve Williamson’s contributions to the CPA research and her post-Nobel work with the OSA on environmental measurement and modeling. At the end of the interview, Strickland emphasizes the importance of luck in her career, she reviews the broader applications of CPA lasers, and she conveys her interest in quantum entanglement which she hopes to pursue when her schedule allows.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Robert P. Kirshner, Clowes Research Professor of Science at Harvard University, discusses his interests in supernovae and work as Chief Program Officer for Science at the Gordon and Betty Moore Foundation. He reflects upon the shifting terminology pertaining to astronomy, astrophysics and cosmology. He discusses his experience as an undergraduate at Harvard University. Kirshner details his experience at Caltech as a graduate student and his time studying supernovae under Bev Oke. He discusses his post-doc position at Kitt Peak National Observatory and the competition they had with Palomar. Kirshner speaks about his experience working with undergraduate students at the University of Michigan and eventually becoming the chair and observatory director. He details his role as head of Optical Infrared at the Harvard Smithsonian Center. Lastly, Kirshner discusses his Nobel Prize winning discovery of using observations of distant supernovae to discover the accelerating universe.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Sheldon Glashow, Professor of Physics Emeritus at Harvard University and Professor of Physics Emeritus at Boston University, reflects on his career and Nobel Prize winning work. He discusses his childhood friendship with Steve Weinberg and his passion for science from a young age. He reflects on his decision to attend Cornell University for undergrad and details the physics curriculum at the time. Glashow describes his time as a graduate student at Harvard University studying under Julian Schwinger. He discusses his time as a post-doc at the Institute for Theoretical Physics in Copenhagen working on the SU(2)XU(1) theory, which would later win him a Nobel prize in 1979. He speaks about working with Murray Gell-Mann while at Caltech and their collaboration on a paper together. Glashow details being hired as a full professor at Harvard University. He discusses his frequent collaboration with Alvaro De Rujula. He discusses the concept of string theory and how it has evolved over the years. He discusses the loss of the superconducting super collider and reflects on where particle and theoretical physics may be today had it been built. Lastly, Glashow reflects on his goals for "Inference: International Review of Science", of which he is the editor-at-large.