Particle physics

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Savas Dimopoulos, Professor of Physics at Stanford University. The interview begins with Dimopoulos reflecting on how the pandemic has affected his research, and he gives his initial impressions on the g-2 muon anomaly experiment at Fermilab. He discusses the push and pull between theory and experimentation when searching for physics beyond the Standard Model. Dimopoulos then recounts his early childhood in Turkey, where his family was part of the Greek minority. Due to ethnic tensions, he fled with his family to Athens as refugees. Dimopoulos remembers his early exposure to math and physics and being torn between the two. He describes moving to the US at age 18 for his undergraduate studies at University of Houston. Dimopoulos then recounts his inclination toward theory and his acceptance at University of Chicago to pursue his graduate studies under Yoichiro Nambu. He discusses his post-doctoral appointment at Columbia which then led to an offer from Stanford. He explains his research in baryogenesis and technicolor, as well as his brief time at Harvard with Howard Georgi. Dimopoulos talks about his return to Stanford, his work at CERN, and his research on large extra dimensions with Dvali and Arkani-Hamed. He concludes the interview with predictions for the future of physics beyond the Standard Model.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with A.J. Stewart Smith, the Class of 1909 Professor of Physics, emeritus, at Princeton University, who also served as the university vice president for the Princeton Plasma Physics Laboratory. Smith begins the interview with an overview of his affiliations with SNOLAB, CERN, and Italian Nuclear and Particle Physics. He recaps the effects of the pandemic on experimental particle physics. Smith then summarizes his family history and his childhood in Canada, where he became interested in the sciences in high school. Smith recalls his undergraduate studies in physics at University of British Columbia, where he also earned a master’s degree, as well as his decision to pursue a PhD at Princeton. He describes working on the Princeton-Penn Accelerator with his advisor Pierre Piroue, and the subsequent offer of a fellowship at DESY working with Sam Ting on QED. Smith recounts his move back to Princeton to join the faculty, and he describes the “bipartisanship” between experimentalists and theorists at the time. He discusses the origins of the Chicago-Princeton collaboration at Fermilab, his involvement with E-787 experiment at Brookhaven, and his time as technical coordinator and spokesperson for the BaBar experiment. The interview concludes with Smith’s recollections of his time as Princeton’s first dean of research, as well as his reflections on times when theory has led experimentation, and vice versa.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Oscar Wallace (Wally) Greenberg recalls his experiences growing up in New Jersey as the child of Jewish immigrants from Eastern Europe and his accelerated education at Rutgers University and Princeton University, where his advisor was Arthur Wightman. He discusses his dissertation called “The Asymptotic Condition in Quantum Field Theory,” postdocs at Brandeis with S. S. Schweber and at MIT with Francis Low, and early work on high-energy limits and the general structure of quantum field theory. He reflects on his landmark proposal that quarks have a three-valued charge, later called color, as well as the delayed acceptance of the idea, his prediction of later measurements of the excited states of baryons, and his propensity not to promote his contributions. Greenberg also discusses his acceptance of a position at the University of Maryland, where he would spend most of his career, as well as visiting appointments elsewhere, and he offers anecdotes about his interactions with J. Robert Oppenheimer and Albert Einstein at the Institute for Advanced Study. The interview concludes with discussions of what remains unknown in particle physics and of cosmology as a “laboratory” with particle energies not available on Earth. A technical addendum to the interview lists 24 of Greenberg’s key contributions to physics.

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Herman B. White, physicist at Fermi National Accelerator Laboratory. White recounts his childhood in Tuskegee, Alabama and growing up during segregation. He discusses his early interests in science and his decision to enroll at Earlham College in Indiana as an undergraduate. White then describes his time at Michigan State University as a graduate student, during which he also held a position as a resident research associate at Argonne National Laboratory. Dr. White talks about his transition from nuclear physics to particle physics upon completing his master’s degree at MSU. He discusses the events that led him to accept a position at Fermilab rather than immediately pursue a PhD. White was the first African-American scientist appointed at Fermilab, and he recounts his early years there being mentored by Raymond Stefanski. He then describes his research fellowship at Yale and his non-traditional path to getting a PhD in 1991 from Florida State University. White talks about returning to Fermilab to work on kaon physics, and his eventual involvement in the Tevatron experiment. Toward the end of the interview, White reflects on the changes and trends he has seen in the research being done at Fermilab over the years, as well as his involvement in the National Society of Black Physicists.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Daniel R. Marlow, Evans Crawford Class of 1911 Professor of Physics, at Princeton University. Marlow recounts his childhood in Ontario and his father’s military appointment which brought his family to the United States when he was fourteen. He describes his undergraduate experience at Carnegie Mellon and the considerations that compelled him to remain for his graduate work in physics. Marlow describes his thesis research under the direction of Peter Barnes and his research visits to Los Alamos, Brookhaven, and JLab, and he surveys the theoretical advances that were relevant to his experimental work. He explains his decision to stay at CMU as a postdoctoral researcher and as an assistant professor, and he describes his interests which straddled the boundary between particle physics and nuclear physics. Marlow describes the opportunities leading to his faculty appointment at Princeton by way of the research in k+ and pi+nu nu-bar experiments at CERN. He discusses his involvement in planning for the SSC, and how the Gem collaboration was designed to find the Higgs and supersymmetry before the LHC. Marlow discusses the e787 experiment and the lesson gained that rare kaon decay experiments are more difficult than they appear at first glance. Marlow describes the origins of the Belle project in Japan at KEK and its relationship to BaBar, and he explains how finding the Higgs was the capstone to the Standard Model. He surveys the current state of play in experimental particle physics and why he encourages students to follow their interests without overly analyzing future trends in the field. At the end of the interview, Marlow describes his current interest in studying displaced vertices and long-lived particle searches, and he muses that toward the end of his career, he wants to become more of a “graduate student” so that he can focus more exclusively on the physics that is most compelling to him.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Wit Busza, Francis L. Friedman Professor of Physics Emeritus at MIT. He recounts his birth in Romania as his family was escaping Poland at the start of World War II, and his family's subsequent moves to Cyprus and then to British Palestine, where he lived until he was seven, until the family moved to England. He describes the charitable circumstances that allowed him to go to Catholic boarding school, his early interests in science, and the opportunities that led to his undergraduate education in physics at University College in London, where he stayed on for his PhD while doing experiments at CERN working with Franz Heymann. Busza describes the development of spark chambers following the advances allowed by bubble chambers, and his thesis research using the Chew-Low extrapolation to calculate the probability that the proton is a proton plus a pi-zero. He describes meeting Martin Perl and the opportunities that led to his postdoctoral position at SLAC, which he describes in the late 1960s as being full of brilliant people doing the most exciting physics and where he focused on rho proton cross-sections. Busza describes meeting Sam Ting at SLAC which led to Busza's faculty appointment at MIT, where he discovered his talent for teaching. He discusses the complications associated with the discovery of the J/psi and his developing interest in relativistic heavy ion physics, the E178 project at Fermilab to examine what happens when high energy hadrons collide, and the E665 experiment to study quark propagation through nuclear matter. Busza describes the import of the RHIC and PHOBOS collaborations, and he discusses his return to SLAC to focus on WIC and SLD. He describes the global impact of the LHC and CERN, and his satisfaction at being a part of what the DOE called the best nuclear physics group in the country. In the last part of the interview, Busza reflects on the modern advances in atomic and condensed matter physics, which were inconceivable for him to imagine at the beginning of his career, he describes the considerations leading to his retirement, and why, if could re-live his career, he would think harder about being a theorist.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with William Marciano, Senior Physicist at Brookhaven National Laboratory. Marciano recounts his upbringing in Brooklyn and his early interests in science, and he describes his undergraduate work at RPI and then NYU. He explains his decision to remain at NYU for his graduate research to study under the direction of Alberto Sirlin, and his thesis research on dimensional regularization. Marciano discusses his postdoctoral appointment at Rockefeller University where he worked on the SU(5) model of Grand Unification, and the opportunities that led to his promotion there to a faculty position. He explains his short tenure at Northwestern before joining Brookhaven, where kaon physics was taking center stage, and where ISABELLE was being built. Marciano discusses the origins of the Lab's g-2 experiment, and he compares the demise of ISABELLE to that of the SSC, for which he served on the program advisory committee. He describes the success of RHIC, and he discusses his research focus on muon and neutrino physics for the Lab's AGS program. Marciano explains his proposal that led to DUNE at Fermilab and he surveys his long record of advisory work for the HEPAP community and how the United States has contributed to the LHC. He reflects on winning the Sakurai prize and his contributions in establishing the validity of the Standard Model at the level of its quantum corrections. Marciano describes his recent work in dark physics, and he surveys the current state of play in muon physics and the Intensity Frontier. At the end of the interview, Marciano compares the diffuse network of the U.S. National Lab system to the centrality of CERN in Europe, and he explains why his work on DUNE and CP violation has been so personally meaningful.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Nygren discusses: the problem of the university and specialization in addressing global challenges; reaction to the muon anomaly in the g-2 experiment at Fermilab; work on particle physics with at University of Washington; experimentation at Berkeley lab; post-doc at Columbia with Jack Steinberger working to measure the semileptonic charge asymmetry in neutral kaon decays to find evidence of CP symmetry violation; building an MWPC-based detector; experimental work with Owen Chamberlain and the Bevatron, developing the Bevalac; invention and design of the Time Projection Chamber (TPC) at Berkeley; early models of the TPC and concerns during development; Pief Panofsky; PEP-4 TPC success; involvement with doomed supercolliding super conductor (SSC) project; development of pixel-based vertex detector/smart pixel arrays; making deep-depletion charge coupled devices (CCDs) with Steve Holland; Carl Rubbia; x-ray mammography research with leading to the Philips MicroDose System; contributions to the NESTOR Project neutrino muon detector; involvement with IceCube and gathering digital data; discussion of the AMANDA array; using gas time projection chamber to look for neutrinoless double beta decacy (NLDBD); collaboration with Juan José Gómez Cardenas; using biochemistry to make connections for NLDBD discoveries; the question of whether the neutrino is its own antiparticle; development of Single Molecue Fluorescence Imaging (SMFI); Q-Pix idea; progress building Q-Pix detectors; work at UTA using the Earth-Human System as a way to reorient the university toward the big picture of climate change. Toward the end of the interview, Nygren reflects on his own “eureka moments,” the “failures” that led to deeper learning, his mixed feelings about the future of the planet, and the belief that physics can be a training ground for the new ideas humanity will need.