Particle physics

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Herman B. White, physicist at Fermi National Accelerator Laboratory. White recounts his childhood in Tuskegee, Alabama and growing up during segregation. He discusses his early interests in science and his decision to enroll at Earlham College in Indiana as an undergraduate. White then describes his time at Michigan State University as a graduate student, during which he also held a position as a resident research associate at Argonne National Laboratory. Dr. White talks about his transition from nuclear physics to particle physics upon completing his master’s degree at MSU. He discusses the events that led him to accept a position at Fermilab rather than immediately pursue a PhD. White was the first African-American scientist appointed at Fermilab, and he recounts his early years there being mentored by Raymond Stefanski. He then describes his research fellowship at Yale and his non-traditional path to getting a PhD in 1991 from Florida State University. White talks about returning to Fermilab to work on kaon physics, and his eventual involvement in the Tevatron experiment. Toward the end of the interview, White reflects on the changes and trends he has seen in the research being done at Fermilab over the years, as well as his involvement in the National Society of Black Physicists.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Daniel R. Marlow, Evans Crawford Class of 1911 Professor of Physics, at Princeton University. Marlow recounts his childhood in Ontario and his father’s military appointment which brought his family to the United States when he was fourteen. He describes his undergraduate experience at Carnegie Mellon and the considerations that compelled him to remain for his graduate work in physics. Marlow describes his thesis research under the direction of Peter Barnes and his research visits to Los Alamos, Brookhaven, and JLab, and he surveys the theoretical advances that were relevant to his experimental work. He explains his decision to stay at CMU as a postdoctoral researcher and as an assistant professor, and he describes his interests which straddled the boundary between particle physics and nuclear physics. Marlow describes the opportunities leading to his faculty appointment at Princeton by way of the research in k+ and pi+nu nu-bar experiments at CERN. He discusses his involvement in planning for the SSC, and how the Gem collaboration was designed to find the Higgs and supersymmetry before the LHC. Marlow discusses the e787 experiment and the lesson gained that rare kaon decay experiments are more difficult than they appear at first glance. Marlow describes the origins of the Belle project in Japan at KEK and its relationship to BaBar, and he explains how finding the Higgs was the capstone to the Standard Model. He surveys the current state of play in experimental particle physics and why he encourages students to follow their interests without overly analyzing future trends in the field. At the end of the interview, Marlow describes his current interest in studying displaced vertices and long-lived particle searches, and he muses that toward the end of his career, he wants to become more of a “graduate student” so that he can focus more exclusively on the physics that is most compelling to him.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Wit Busza, Francis L. Friedman Professor of Physics Emeritus at MIT. He recounts his birth in Romania as his family was escaping Poland at the start of World War II, and his family's subsequent moves to Cyprus and then to British Palestine, where he lived until he was seven, until the family moved to England. He describes the charitable circumstances that allowed him to go to Catholic boarding school, his early interests in science, and the opportunities that led to his undergraduate education in physics at University College in London, where he stayed on for his PhD while doing experiments at CERN working with Franz Heymann. Busza describes the development of spark chambers following the advances allowed by bubble chambers, and his thesis research using the Chew-Low extrapolation to calculate the probability that the proton is a proton plus a pi-zero. He describes meeting Martin Perl and the opportunities that led to his postdoctoral position at SLAC, which he describes in the late 1960s as being full of brilliant people doing the most exciting physics and where he focused on rho proton cross-sections. Busza describes meeting Sam Ting at SLAC which led to Busza's faculty appointment at MIT, where he discovered his talent for teaching. He discusses the complications associated with the discovery of the J/psi and his developing interest in relativistic heavy ion physics, the E178 project at Fermilab to examine what happens when high energy hadrons collide, and the E665 experiment to study quark propagation through nuclear matter. Busza describes the import of the RHIC and PHOBOS collaborations, and he discusses his return to SLAC to focus on WIC and SLD. He describes the global impact of the LHC and CERN, and his satisfaction at being a part of what the DOE called the best nuclear physics group in the country. In the last part of the interview, Busza reflects on the modern advances in atomic and condensed matter physics, which were inconceivable for him to imagine at the beginning of his career, he describes the considerations leading to his retirement, and why, if could re-live his career, he would think harder about being a theorist.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with William Marciano, Senior Physicist at Brookhaven National Laboratory. Marciano recounts his upbringing in Brooklyn and his early interests in science, and he describes his undergraduate work at RPI and then NYU. He explains his decision to remain at NYU for his graduate research to study under the direction of Alberto Sirlin, and his thesis research on dimensional regularization. Marciano discusses his postdoctoral appointment at Rockefeller University where he worked on the SU(5) model of Grand Unification, and the opportunities that led to his promotion there to a faculty position. He explains his short tenure at Northwestern before joining Brookhaven, where kaon physics was taking center stage, and where ISABELLE was being built. Marciano discusses the origins of the Lab's g-2 experiment, and he compares the demise of ISABELLE to that of the SSC, for which he served on the program advisory committee. He describes the success of RHIC, and he discusses his research focus on muon and neutrino physics for the Lab's AGS program. Marciano explains his proposal that led to DUNE at Fermilab and he surveys his long record of advisory work for the HEPAP community and how the United States has contributed to the LHC. He reflects on winning the Sakurai prize and his contributions in establishing the validity of the Standard Model at the level of its quantum corrections. Marciano describes his recent work in dark physics, and he surveys the current state of play in muon physics and the Intensity Frontier. At the end of the interview, Marciano compares the diffuse network of the U.S. National Lab system to the centrality of CERN in Europe, and he explains why his work on DUNE and CP violation has been so personally meaningful.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Nygren discusses: the problem of the university and specialization in addressing global challenges; reaction to the muon anomaly in the g-2 experiment at Fermilab; work on particle physics with at University of Washington; experimentation at Berkeley lab; post-doc at Columbia with Jack Steinberger working to measure the semileptonic charge asymmetry in neutral kaon decays to find evidence of CP symmetry violation; building an MWPC-based detector; experimental work with Owen Chamberlain and the Bevatron, developing the Bevalac; invention and design of the Time Projection Chamber (TPC) at Berkeley; early models of the TPC and concerns during development; Pief Panofsky; PEP-4 TPC success; involvement with doomed supercolliding super conductor (SSC) project; development of pixel-based vertex detector/smart pixel arrays; making deep-depletion charge coupled devices (CCDs) with Steve Holland; Carl Rubbia; x-ray mammography research with leading to the Philips MicroDose System; contributions to the NESTOR Project neutrino muon detector; involvement with IceCube and gathering digital data; discussion of the AMANDA array; using gas time projection chamber to look for neutrinoless double beta decacy (NLDBD); collaboration with Juan José Gómez Cardenas; using biochemistry to make connections for NLDBD discoveries; the question of whether the neutrino is its own antiparticle; development of Single Molecue Fluorescence Imaging (SMFI); Q-Pix idea; progress building Q-Pix detectors; work at UTA using the Earth-Human System as a way to reorient the university toward the big picture of climate change. Toward the end of the interview, Nygren reflects on his own “eureka moments,” the “failures” that led to deeper learning, his mixed feelings about the future of the planet, and the belief that physics can be a training ground for the new ideas humanity will need. 

Interviewed by
David Zierler
Interview date
Location
video conference
Abstract

In this interview, Michael Peskin discusses: his childhood in Philadelphia; Alan Luther; particle physics at Cornell; relationship with David Politzer; Leonard Susskind; reactions to Gabriele Veneziano’s string theory paper; overview of Ken Wilson’s career and publications; Thirring model; the Harvard Society of Fellows; Nambu-Jona-Lasinio model; quark confinement work; thinking Beyond-the-Standard-Model (BSM); the problem of electroweak symmetry breakage; Stanley Brodsky and Peter Lepage; work on technicolor models to try to explain the quark and lepton mass spectrum; involvement in discussions around the Superconducting Super Collider (SSC); interest in e+e- colliders; collaboration with Bryan Lynn; question of the mass of the top quark; developing the Introduction to Quantum Field Theory textbook with Daniel Schroeder; impact of the collapse of the SSC on physics research; involvement in planning discussions for the International Linear Collider (ILC); movement into cosmology and astrophysics; dark sector theories; reaction to the term “God particle;” discussion of his book Concepts of Elementary Particle Physics; explanations of various views of the top quark; experiences working with Stanford graduate students; changes at SLAC and its contributions to the field; topics in string theory; AdS/CFT duality; BaBar and Bell experiments and CP violation; current work on electroweak symmetry breaking in Randall-Sundrum models; ILC as the future of high energy physics and physics BSM; China’s proposed Circular Electron Positron Collider (CEPC); technical details of proposed Future Circular Collider (FCC); plasma wake field accelerators; work on particle physics website for Michael Cooke of the DOE; and the technological contributions of particle physics, especially in regards to informatics development, machine learning, and unique sensor development. Toward the end of the interview, Peskin reflects on the utility and limitations of the Standard Model, and details the most likely opportunities for discovery, especially those made possible through the construction of an e+e- collider.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

n this interview, Stephon Alexander discusses current research into quantum gravity and possible extensions to string theory; work to merge quantum mechanics and general relativity; research into the connection between music and cognitive science; experience as a jazz musician; intersections of philosophy and physics; experience as president of the National Society of Black Physicists (NSBP); challenges and stigmas associated with being a Black academic; growing up in both rural Trinidad and the Bronx; undergraduate experience at Haverford; graduate work at Brown; guidance from Robert Brandenberger into the field of quantum gravity, applying particle physics to astrophysics and cosmology; thesis research on solitons and topological defects and its role in string cosmology and theory; decision to take postdoc at Imperial College London focusing on M-theory and integrating string theory with cosmic inflation; influence of Alan Guth; work on D-brane driven inflation; experience in the underground London music scene; decision to go to SLAC in Stanford and work under Michael Peskin; loop quantum gravity; time as faculty at Penn State; the role and responsibility of the Black academic; recruitment by Brown University; intellectual influence of David Finkelstein; the process of becoming president of NSBP. Toward the end of the interview, Alexander reflects on his books, The Jazz of Physics and Fear of a Black Universe; being an outsider in the field of physics; and revisits his current work on quantum gravity. He emphasizes the importance of in-person collaboration and improvisation. 

Interviewed by
David Zierler
Interview dates
February 15, March 29, May 12, 2021
Location
Video conference
Abstract

In this interview, Fabiola Gianotti, Director-General of CERN, reflects on being the first woman in this position and the multi-layered challenges of maintaining operations at CERN during the pandemic. She recounts her upbringing in Milan and the scientific influence of her father, who was a geologist. Gianotti describes her education at the University of Milan and her formative interactions with Carlo Rubbia at CERN. She describes her work on the LEP and ADELPH collaborations and how the cancellation of the SSC affected CERN. Gianotti narrates the origins of the LHC and parallel concentration on supersymmetry and she describes the ATLAS and CMS teams and her advisory work for P5 in the United States. She discusses her election and responsibilities as Spokesperson of ATLAS and she describes the careful process of detecting and analyzing the signals that confirmed the Higgs. Gianotti describes the unique opportunity to engage a global audience given the magnitude and interest in the discovery, and she explains LHC’s planning, post-Higgs, for new physics. She describes the shutdown period that started in 2013 and the circumstances to her being named Director-General in 2013. Gianotti surveys what has, and has not, been detected at the LHC over the past decade, and how dark matter searches at CERN are complementary to those using Xenon detectors. She conveys optimism about the high luminosity upgrade at the LHC and how she frequently operates in political realms given the international nature of CERN. At the end of the interview, Gianotti observes that current projects at the CERN are reminiscent of the buildup to the LHC, and why this bodes well for the future of experimental particle physics. 

Interviewed by
David Zierler
Interview dates
May 6 & 25, 2021
Location
Video conference
Abstract

Interview with David G. Hitlin, Professor of Physics at California Institute of Technology. Hitlin discusses his thesis work on high-resolution muonic X-ray studies with his advisor and mentor Chien-Shiung Wu, and his subsequent transition to elementary particle physics at SLAC. He relates his experiences with kaon physics as a member of Mel Schwartz’s group at SLAC and Stanford. As a member of the Richter group at SLAC he worked on the Mark II experiment and then founded the Mark III experiment at SPEAR. After moving to Caltech in 1979, he worked on the SLD experiment at the SLC and then as founding Spokesman of the BABAR experiment at PEP-II. The interview ends with a discussion of his current involvements with the Fermilab experiment Mu2e and the nascent SLAC experiment LDMX.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Marc Kamionkowski, William R. Kenan, Jr. Professor of Physics and Astronomy at Johns Hopkins University. He discusses his family heritage of Ashkenazi Jews who left Eastern Europe for Argentina, and his father’s medical research which took the family to Cleveland. Kamionkowski recounts his childhood in Shaker Heights, and he describes his undergraduate work at Washington University, where he switched from pre-med to physics to work with Marty Israel and Joe Klarmann. Despite his lack of preparation, Kamionkowski explains his admission to the University of Chicago, and he describes “the bug” that made him focus on physics and drive to succeed in quantum mechanics and understand quantum field theory. He discusses his thesis research under the direction of Michael Turner on energetic neutrinos from WIMP annihilation in the sun. Kamionkowski discusses his post-doctoral research at the Institute for Advanced Study where he was in Frank Wilczek’s particle theory group. He describes his first faculty appointment at Columbia and how experimental advances had opened up opportunities in cosmology. He explains his decision to move to Caltech because of its strength in theoretical astrophysics and where he became director of the Moore Center. Kamionkowski discusses his subsequent move to Johns Hopkins, and he surveys his recent projects on the Hubble Tension and early dark energy. At the end of the interview, Kamionkowski explains why he has always valued research that bridges the divide between theory and experimentation and why he expects this will continue to inform his broad research agenda.