Soft condensed matter

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Thomas Witten, Homer J. Livingston Professor, Emeritus, in the Department of Physics, James Franck Institute. Witten recounts his childhood in Maryland, Utah, and then Colorado, as his father, a medical doctor moved jobs, and he describes his undergraduate experience at Reed College and where majored in physics and where he benefited from excellent attention from the professors. He discusses his graduate work at UC San Diego, where he was advised by Shang Ma working on two-dimensional charged Bose gas research, and he describes his postdoctoral research at Princeton to work with John Hopfield. Witten conveys the exotic nature of Ken Wilson’s ideas on renormalization during that time, and he explains the origins of soft matter physics as a distinct field and his work at Saclay before joining the faculty at the University of Michigan. He describes his subsequent research on pushing concepts of renormalization into polymers and related work on the Kondo effect. Witten explains his decision to join the research lab at Exxon, and he conveys Exxon’s emulation of Bell Labs as a place where he could pursue basic science within an industrial research lab, and where he could continue his work on polymers. He describes the downsizing of the lab and his decision to join the faculty at the University of Chicago, and his discusses his developing interests in buckyballs and capillary flow. Witten describes his affiliation with the James Franck Institute and its rich history, and he explains his current interests in granular materials, thin sheets, and colloidal rotation. At the end of the interview, Witten emphasizes the technological impact of fast video on soft matter physics and his interest in the physics of crumpling objects.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Thomas Mason, professor of chemistry and biochemistry at UCLA. Mason recounts his childhood in Frederick, MD, and he describes the influence of his father, who was a zoologist. Mason discusses his undergraduate education at the University of Maryland where he pursued a dual degree in physics and electrical engineering, and he describes the opportunity that led to his graduate work at Princeton. He explains his work at Exxon Research and Engineering Lab, where he worked with Dave Weitz, and he describes the growth of soft matter condensed physics. Mason discusses his dissertation in micro-rheology and some of the broader questions in Brownian systems when colloids are micro-dispersed. He describes his postdoctoral work in France with Jerome Bibette, where he focused on the science of emulsification, and he discusses his senior postdoctoral position at Johns Hopkins, where he worked with Scot Kuo who was concentrating on the rheology of concentrated DNA. Mason explains his decision to join Exxon as a principal investigator, where he researched asphaltenes, and he discusses some of the broader advances in soft matter physics fostered at the Exxon lab. He describes his motivations for returning to academia, and in particular his desire to teach, he explains the opportunity leading to his tenure at UCLA, and he describes his contributions to the NanoSystems Institute. Mason discusses his involvement in many of the clinical and therapeutic aspects of soft matter physics, and at the end of the interview, he offers insight on where his broad interests in platform technologies might be relevant as his field continues to grow.