Interview with Joel L. Lebowitz, the George William Hill professor of mathematics and physics at Rutgers University and Director of the Center for Mathematical Sciences Research at Rutgers. The interview begins with a brief discussion of how Lebowitz defines mathematical physics, his current interest in statistical mechanics, and his involvement in the Committee of Concerned Scientists. Lebowitz then looks back at his childhood in former Czechoslovakia, now Ukraine, where Yiddish was his first language. He recounts his memories of state-imposed anti-Semitism and his deportation to Auschwitz. Upon being liberated from the camp, Lebowitz describes his journey to the US where he studied math and theoretical physics at Brooklyn College. He talks about his graduate studies at Syracuse University with Peter Bergmann, as well as his post-doctoral position at Yale University with Lars Onsager. Lebowitz recalls his work on topics such as Coulomb forces, the thermodynamic limit, Ising spins, stochastic dynamics and more. He discusses his affiliation with the New York Academy of Sciences, of which he eventually became President, as well as his involvement in human rights issues related to the Refusenik scientists. The interview concludes with Lebowitz’s reflections on the connections between science and morality.
Interview with Ellen D. Williams, Director of the Earth System Science Interdisciplinary Center and Distinguished University Professor at the University of Maryland. Williams recounts her childhood in Michigan, and the benefits that she enjoyed growing up during the height of the U.S. car manufacturing era. She discusses her undergraduate education at Michigan State where she developed an interest in physical chemistry and become involved in women’s rights issues. Williams explains her decision to attend Caltech for graduate school, where she conducted thesis research on the statistical mechanics of surfaces using electron diffraction. She describes the opportunities leading to her appointment in physics and astronomy at Maryland, and she explains the transition from chemistry to a physics department, which was smoothed by the fact that her research focused on phase transitions and critical phenomena. Williams describes achieving tenure and her work within the Institute for Physical Science and Technology. She explains her research in scanning tunneling microscopes and nanotechnologies, and her increasing fluency in working with government funding agencies. Williams explains her decision to join BP as chief scientist where she was involved in fostering BP’s commitment to sustainability, and she describes Ernest Moniz’s offer for her to direct ARPA-E at DOE during the second term of the Obama administration. She conveys her enjoyment working in such a focused manner on clean energy in this role and her contributions to the Paris Climate Accord. Williams describes returning to Maryland and explains the most efficacious way of teaching students about both the science and policy implications of climate change. At the end of the interview, Williams discusses her work as director of the Earth Systems Science Interdisciplinary Center and the ongoing governmental collaborations this position allows, and she offers optimism that we have both the technological and political tools to mitigate climate change effectively.
Interview with Michael Kosterlitz, Harrison E. Farnsworth Professor of Physics at Brown University. He recounts his family background in Germany and his upbringing in Aberdeen, Scotland, and he explains that opportunities that led to his undergraduate admission at Cambridge University where he developed his life-long passion for rock climbing. He describes his early interest in high-energy physics and his decision to pursue a graduate degree at Oxford where he worked on the Veneziano and dual resonance models under the direction of John Taylor. Kosterlitz discusses his postdoctoral work first in Torino and then at Birmingham where he met David Thouless and where he developed his initial interest in condensed matter and his subsequent expertise in phase transitions and superfluidity. He explains the revolutionary advances of Ken Wilson’s renormalization group and his decision to go Cornell where he enjoyed a foundational collaboration with David Nelson and Michael Fisher on crossover problems in critical phenomena. Kosterlitz discusses his decision to join the faculty at Brown, and he provides an overview in the advances in superfluidity in the 1970s and 1980s. He discusses the research that was eventually recognized by the Nobel prize committee and the experiments that bore out the theoretical predictions which were an essential prerequisite to the award. Kosterlitz describes the many benefits conferred as a result of winning the Nobel, and he provides perspective on how he has coped with his diagnosis of multiple sclerosis over the years. At the end of the interview, Kosterlitz explains his reluctance to prognosticate on future trends in the field because his experiences have proved to him that one can never know such things and that research breakthroughs are often unforeseen.