Interview with Malcolm Roy Beasley, Sidney and Theodore Rosenberg Professor of Applied Physics, Emeritus, at Stanford. Beasley recounts his passion for basketball in high school and the opportunities that led to his undergraduate study at Cornell, where he describes his focus on engineering physics as just the right blend of fundamental and applied research. He describes his relationship with Watt Webb, who would become his graduate advisor, and the origins of BCS theory. Beasley discusses his work taking magnetization measurements on type-II superconductors and his thesis research on flux creep and resistance. He discusses his postdoctoral appointment working with Mike Tinkham at Harvard and the developments leading to reduced dimensional superconductivity. Beasley explains the technological implications in the fluctuations of the order parameter, and he describes the speed with which Harvard made him a faculty offer. He discusses the circumstances that led to him joining the faculty at Stanford, his immediate connection with Ted Geballe, and his work on A15 superconductors. Beasley explains the significance of the 1976 Applied Superconductivity Conference and the important work in the field coming out of the Soviet Union at the time. He conveys the excitement regarding amorphous silicon and how the KT transition in superconductors became feasible. Beasley describes his interest in thermal fluctuation limits and coupled oscillators, and he describes Aharon Kapitulnik’s arrival at Stanford and the origins of the “KGB” group. He describes the group’s work on alloyed-based model systems and his idea to study high-resistance SNS Josephson junctions. Beasley explains “Pasteur’s quadrant” and why the KGB group was so well-attuned to dealing with it, and he discusses the impact of computational theory on the field and specifically that of Josephson junctions on digital electronics. He surmises what quantum superconductivity might look like, and he describes his work as dean and as founding director of GLAM, and some of the inherent challenges in the “trifurcation” at Stanford between the Departments of Physics and Applied Physics and SLAC. Beasley discusses his leadership at APS and the issue of corporate reform, and he explains his role in the Schön commission and what it taught him about scientific integrity. At the end of the interview, Beasley reflects on some of the “forgotten heroes” in the long history of superconductivity, he attempts to articulate his love for physics, and he explains why the achievements of the KGB group represent more than the sum of its parts.
Interview with Lynwood Randolph, physicist and former space program administrator at NASA. Randolph recounts his childhood in a segregated Richmond and remembers his love for music as well as his introduction to physics in high school. He explains his decision to attend Virginia State University, where he participated in the ROTC program and served in the military upon graduation. After his service, Randolph decided to pursue graduate school and received a National Defense Education Act fellowship to attend Howard University. He explains his focus on experimental work during his graduate studies, pertaining to radiation effects and optical properties of materials. Randolph began a summer job at Harry Diamond Laboratories in DC, where he went on to work for 10 years. Randolph discusses the limitations in the types of jobs available to African Americans at the time, and explains the opportunity at NASA that led him to spend 23 years there. He served in many roles such as Manager for Advanced Concepts in the office of Aeronautics and Space Technology, Chief of the Management Programs Branch, and, later, Information Technology Standards Manager. Randolph reflects on the diversity within NASA over the years and how technology innovations impacted the workplace landscape. He discusses his work with HBCUs and his creation of LES Associates, a consulting company that works in a variety of educational and technological areas. Randolph concludes the interview with reflections on the importance of mentorship and diversity within the field.
Interview with A.J. Stewart Smith, the Class of 1909 Professor of Physics, emeritus, at Princeton University, who also served as the university vice president for the Princeton Plasma Physics Laboratory. Smith begins the interview with an overview of his affiliations with SNOLAB, CERN, and Italian Nuclear and Particle Physics. He recaps the effects of the pandemic on experimental particle physics. Smith then summarizes his family history and his childhood in Canada, where he became interested in the sciences in high school. Smith recalls his undergraduate studies in physics at University of British Columbia, where he also earned a master’s degree, as well as his decision to pursue a PhD at Princeton. He describes working on the Princeton-Penn Accelerator with his advisor Pierre Piroue, and the subsequent offer of a fellowship at DESY working with Sam Ting on QED. Smith recounts his move back to Princeton to join the faculty, and he describes the “bipartisanship” between experimentalists and theorists at the time. He discusses the origins of the Chicago-Princeton collaboration at Fermilab, his involvement with E-787 experiment at Brookhaven, and his time as technical coordinator and spokesperson for the BaBar experiment. The interview concludes with Smith’s recollections of his time as Princeton’s first dean of research, as well as his reflections on times when theory has led experimentation, and vice versa.
The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact [email protected].
Interview with Herman B. White, physicist at Fermi National Accelerator Laboratory. White recounts his childhood in Tuskegee, Alabama and growing up during segregation. He discusses his early interests in science and his decision to enroll at Earlham College in Indiana as an undergraduate. White then describes his time at Michigan State University as a graduate student, during which he also held a position as a resident research associate at Argonne National Laboratory. Dr. White talks about his transition from nuclear physics to particle physics upon completing his master’s degree at MSU. He discusses the events that led him to accept a position at Fermilab rather than immediately pursue a PhD. White was the first African-American scientist appointed at Fermilab, and he recounts his early years there being mentored by Raymond Stefanski. He then describes his research fellowship at Yale and his non-traditional path to getting a PhD in 1991 from Florida State University. White talks about returning to Fermilab to work on kaon physics, and his eventual involvement in the Tevatron experiment. Toward the end of the interview, White reflects on the changes and trends he has seen in the research being done at Fermilab over the years, as well as his involvement in the National Society of Black Physicists.
June 15, July 8, July 29, August 19, September 8, 2020
Location
Video conference
Abstract
Interview with David Gross, Chancellor’s Chair Professor of Physics at University of California in Santa Barbara and a permanent member of the Kavli Institute of Theoretical Physics (KITP). Gross begins by describing his childhood in Arlington, Virginia and his family’s later move to Israel. This led to his decision to enroll at the Hebrew University of Jerusalem for his undergraduate studies in physics and mathematics. Gross recalls his acceptance at Berkeley for his graduate studies, where Geoffrey Chew became his advisor. He explains his early interests in strong interactions, quantum field theory, and S-matrix theory. Gross then describes taking a fellowship at Harvard after completing his PhD, where he recalls his early involvement in string theory. He speaks about his subsequent move to join the faculty at Princeton, as well as his introduction to Frank Wilczek, one of his first graduate students with whom he later shared the Nobel Prize. Gross takes us through the discovery of asymptotic freedom, the development of quantum chromodynamics, and the impact these had on the Standard Model. He discusses his decision to leave Princeton for UCSB, where he focused on growing the KITP and securing funding. Gross describes how his research interests have shifted over the years across topics such as confinement, quantum gravity, and more recently back to string theory. Toward the end of the interview, Gross speaks about his work to develop institutes similar to KITP in other countries, as well as his term as President of the American Physical Society in 2019.
In this interview, Elizabeth Simmons discusses: role as Executive Vice Chancellor (EVC) at UC San Diego; impact of COVID-19; current developments in the field that she finds exciting; family background and childhood; experiences as a woman in physics; M.Phil at Cambridge in Volker Heine’s group working on condensed matter theory; study of condensed matter theory at Harvard; Howard Georgi; work on models exploring electroweak symmetry breaking and quark masses; opinions on why SSC died and the impact on the field; collaboration with Cynthia Brossman on the Pathways K12 outreach project supporting girls’ involvement in STEM; research on the top quark; interest in supersymmetry and physics Beyond the Standard Model (BSM) using a Higgless model; papers with husband Sekhar Chivukula and others exploring the idea of a five-dimensional spacetime; leading Lyman Briggs College; MOOSE model; reaction to the discovery of the Higgs boson; post-Higgs work distinguishing which models can and can’t be consistent with the data; consulting work for the American Physical Society (APS) and the wider academic and scientific community on matters of equity, diversity, and inclusion (EDI); advocacy on behalf of the LGBTQ community; advisory work for the Center for High Energy Physics in China; collaborations at the Aspen Center for Physics to support EDI in the field; role creating career development workshops for women at the International Center for Theoretical Physics; work increasing EDI in curricula and faculty hiring; building cross-field collaboration at UCSD; collaboration with other EVCs in the UC system; current physics work on model building and how to get the most out of available data; and current work on graviton-graviton scattering. Toward the end of the interview, Simmons reflects on intersectionality and the value of diversity in science and discovery.
In this interview with Kate Kirby, recently retired and now CEO Emerita of the American Physical Society, Kirby surveys the many challenges in leading APS during the pandemic, and she recounts her early childhood in Washington DC and then Chicago. She describes her early interests in science and her decision to attend Harvard-Radcliffe for her undergraduate education. Kirby discusses her gravitation toward physics after her initial intent to be pre-med, and she explains her decision to pursue thesis research in chemical physics at Chicago under the direction of Juergen Hinze before returning to Harvard for her postdoctoral research at the Harvard College Observatory which soon merged with the Smithsonian Astrophysical Observatory. She explains her decision to take a full time federal position at the Observatory and she describes her merging interests of chemical and atmospheric physics. Kirby narrates the steady advances in leadership positions she took on at the Observatory, and she describes her increasing involvement in APS activities. She explains the circumstances of becoming Executive Officer of APS in 2009 and she describes the central issue of corporate reform. Kirby describes the process of taking a broad view of the entirety of physics research from this vantage point and the value she places in growing APS membership. She discusses her emphasis on diversity and inclusivity in physics, particularly after the events of 2020, and she narrates her considerations about when to step down from leadership. At the end of the interview, Kirby considers some of the key challenges and opportunities as APS charts its future, she specifies science and ethics and a key area for APS to focus on, and she reflects on the gains women in physics have made over the course of her career.
Interview with Nan Phinney, retired Distinguished Staff Scientist at SLAC. Phinney recounts her childhood in Chicago and her education in Catholic private schools. She describes her undergraduate education at Michigan State where she majored in physics – despite being discouraged by many men that this was not an appropriate field of study for women. Phinney describes the excitement and benefits of focusing on particle physics during such a fundamental era of discovery and she explains her decision to pursue a Ph.D. in physics with Jack Smith at Stony Brook. She discusses her involvement in efforts to discover the Z boson, and she describes her work at CERN. Phinney describes her interest in linear colliders and the circumstances leading to her employment at SLAC. She discusses her initial work on the control system for the SLC and explains how networking issues presented the biggest technical challenge for the project. Phinney describes the international culture of collaboration with projects at CERN and DESY, and she explains the impact of the B factory at SLAC. She discusses her role in the creation of the NLC and the mechanical breakdown leading to the end of the SLC. Phinney describes the origins of the ILC and some of the significant developments in superconductivity in the early 2000s. At the end of the interview, Phinney describes current research on electron-positron colliders, she discusses her work with the APS, and she explains how SLAC has changed both culturally and scientifically over the decades.
Interview with Sylvester James Gates, Jr., Ford Foundation Professor of Physics and Director of the Theoretical Physics Center at Brown University. Gates discusses his preparations to lead the APS and the value of his service for PCAST for this new role. Gates recounts his family heritage and he discusses his father’s military service and the death of his mother. He explains how his family navigated racist challenges during his upbringing in El Paso and then in Orlando and how he navigated his own intellectual abilities in school. Gates explains his interest in physics in high school and the opportunities that led to his admission at MIT for his undergraduate work. He recounts the many mentors who made a positive impression on him and he explains his realization that his specialty would be at the boundary between math and physics. Gates describes his earliest interactions with string theory and he explains his decision to remain at MIT for his graduate work to work with Jim Young on supersymmetry. He paints a broader picture of supergravity research at this time and the rising importance of computers for this work. Gates describes his postdoctoral research at Harvard as a Junior Fellow, where he worked closely with Warren Siegel, and he describes his decision to join the faculty at MIT after a subsequent postdoctoral position at Caltech. He addresses Shelly Glashow’s criticism of string theory, and he explains his decision to leave MIT for a faculty position at the University of Maryland. Gates reflects on his teaching and mentoring career at Maryland, he describes his time at Howard University, and he discusses the broader issue of diversity in physics and AIP’s TEAM-UP Report. He describes his more recent interests in graph theory and the broader effort to unify gravity with the other forces. Gates reflects on how he became an advisor to President Obama for PCAST and how he worked with John Holdren to translate reports into policy changes. He explains his decision to go emeritus at Maryland and to take a new position at Brown, and why joining the Watson Institute was an attractive part of the offer. Gates reflects on assuming leadership at APS during the twin crises of Covid and racial strife, he surveys the state of string theory and high energy physics, and he explains why supersymmetry might offer a path to understanding dark matter. At the end of the interview, Jim conveys his hope that his work in math will yield deep insights into nature, and he considers the possibility of pursuing an autobiographical project.