California Institute of Technology

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Robert Schoelkopf, Sterling Professor of Applied Physics and Physics at Yale, and director of the Yale Quantum Institute. Schoelkopf describes the origins of the Quantum Institute and the longer history of quantum research at Yale, and he recounts his childhood in Manhattan and then in Chappaqua as the son of art dealers. He describes his early interests in science and tinkering, and his undergraduate education at Princeton where he worked with Steve Boughn and Jeff Kuhn in the gravity group. Schoelkopf discusses his job at the Goddard Space Flight Center before beginning graduate work at Caltech. He describes his research under the direction of Tom Phillips in detector development for astrophysical applications and Josephson junctions, and he explains his ambition to focus on developing devices. Schoelkopf discusses his postdoctoral research at Yale to work with Dan Prober on mesascopic physics, and he explains his involvement in microwave research for quantum information and his explorations into the limits of electrometry. He discusses the opportunities that led to his faculty appointment at Yale, his involvement in building qubits and what this would portend for the future of quantum information. Schoelkopf describes the formative influence of Michel Devoret and Steve Girvin and he explains how these collaborations contributed to upending some aspects of theoretical quantum information. He describes how qubit research has matured over the past twenty years and how this research has contributed to industry and commercial ventures, but why he remains focused on basic science within a university setting. At the end of the interview, Schoelkopf predicts some of the practical contributions that true quantum computing can offer society and why he is excited about the next generation of quantum information scientists.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Surjeet Rajendran, Associate Professor of Physics at Johns Hopkins University. He provides an overview of his current research activities with David Kaplan in black hole physics, new short distance forces, and modifications of quantum mechanics, and he shares his reaction on the recent g-2 muon anomaly at Fermilab. Rajendran explains why he identifies as a “speculator” in physics, he recounts his childhood in Chennai, India, and he discusses his grandparents’ communist activism, his Jesuit schooling, and how science offered a refuge for rebellion from these influences. He explains his decision to transfer from the Indian Institute of Technology to Caltech as an undergraduate, where he worked with Alan Weinstein on LIGO. Rajendran discusses his graduate research at Stanford, where KIPAC had just started, and where Savas Dimopoulos supervised his work on PPN parameters and solving the seismic noise problem on atom interferometers for LIGO. He describes his postdoctoral work, first at MIT and then at Johns Hopkins, when he began to collaborate with Kaplan on axion detection and the electroweak hierarchy problem. Rajendran explains the rise and fall of the BICEP project, and his Simons Foundation supported work on CASPEr. He discusses his interest in bouncing cosmology and firewalls in general relativity, and he conveys optimism that LIGO will advance our understanding of black hole information. At the end of the interview, Rajendran reviews his current interests in the Mössbauer effect, and explains how nice it was to win the New Horizons in Physics prize, and he prognosticates on how the interplay between observational and theoretical cosmology will continue to evolve and perhaps resolve fundamental and outstanding questions in the field.

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Interview date
Location
Teleconference
Abstract

In this interview, Michael Turner discusses his life and career. topics include: Kavli Foundation; Kavli Institute for Cosmological Physics; Fred Kavli; Aspen Center for Physics; Rand Corporation; California Institute of Technology (Caltech); Robbie Vogt; Ed Stone; Barry Barish; SLAC National Accelerator Laboratory; B.J. Bjorken; University of Chicago; Dave Schramm; Kip Thorne; Fermi Institute / University of Chicago Institute for Nuclear Studies; Bob Wagoner; University of California, Santa Barbara; Larry Smarr; Dan Goldin; quarks-to-cosmos study; National Science Foundation; Rita Colwell; Advanced LIGO; Atacama Large Millimeter Array (ALMA); IceCube South Pole Neutrino Observatory; Department of Energy; Argonne National Laboratory; Paul Steinhardt.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Peter W. Shor, Morss Professor of Applied Math at MIT. Shor recounts his childhood in Brooklyn and then Washington, DC, and he describes his discovery early in childhood that he had a special aptitude in math. He describes his undergraduate experience at Caltech, where he pursued an interest in combinatronics, and he explains his decision to attend MIT for graduate school, where he studied under Tom Leighton. Shor discusses his graduate work at Bell Labs and he explains how applied math research was relevant to Bell's business model. He describes his thesis research which used math to design good algorithms for computer problem solving, and he discusses his postdoctoral research at the Mathematical Science Research Institute at Berkeley where he focused on computational geometry problems. Shor explains his decision to return to Bell Labs and his focus on optical fibers, and he explains Google's influence in achieving breakthroughs in theoretical computer science. He describes the origins of Shor's Algorithm and Charles Bennett's involvement in this development. Shor explains when true quantum computing became theoretically feasible, and the various budgetary, theoretical, and political challenges that stand between the current state of play and quantum computer realization. He explains his interest in returning to academia at the time Bell Labs was coming apart, and he explains his contributions to advancing quantum information and the utility this has for AdS/CFT research. Shor describes his current interest in black holes and quantum money, and at the end of the interview, he explains why the question of whether NP = P remains fundamental.

Interviewed by
David Zierler
Interview dates
June 29, July 5, July 19, July 26, August 2, August 9, August 16, 2020
Location
Video conference
Abstract

Series of seven interview sessions with Carver Mead, Gordon and Betty Moore Professor Emeritus at Caltech. Mead recounts his childhood in California, and he describes the impact of watching his father’s career in the electric power industry. He credits his schoolteachers for encouraging his early interests in math and science, and he explains why attending Caltech as an undergraduate was an easy choice for him because he felt immediately welcomed during his first visit. He describes what it was like to learn quantum mechanics from Linus Pauling, and he explains that his decision to major in electrical engineering stemmed from the fact that applied physics was shunned in the physics department because Murray Gell-Mann referred to it as “squalid state physics.” Mead describes his decision to stay at Caltech for graduate school, and he explains how he became interested in semiconductors and transistors and what would become the origins of “device physics” and how his dissertation research contributed to these developments. He describes his developing understanding that the future of electronics would be in low power, high-performance devices and why he would be best positioned to foster this future as a faculty member at Caltech. Mead describes his collaborations and interest in industry labs including IBM, RCA, and Bell, and he describes his initial and then longtime work with Gordon Moore. He discusses the value of RF transmitters in 1960s-era communications technology and the prospects of satellite telecommunications at the dawn of the space age. Mead describes the origins of VSLI technology, word processors, and microcomputers, and he describes his collaboration with Lynn Conway and the process that went into the classic textbook they coauthored. He describes his research using the human mind as a source of inspiration to push electronics and microprocessors to the next level, and he explains the value of bouncing ideas off of Feynman over lunch. Mead describes the singular potential of his student and collaborator Misha Mahowald, and the value of his work with Arnold Beckman. He discusses the several companies that were spun out of his research in electronics and biophysics, and he describes his work on cameras with Michihiro Yamaki and the learning curve associated with research culture in Japan. Mead offers his perspective on the need to update the debates between Einstein and Bohr in the wake of recent developments in physics, and he explains the intellectual origins of his text Collective Electrodynamics. He explains why scientific debates can take on philosophical or even religious dynamics, and he discusses the origins of G4V and how to think of gravitational attraction as an analogy to electromagnetic interaction. Relatedly, Mead describes his work with Kip Thorne and his involvement with the LIGO endeavor, and he explains why the line between science and engineering is fuzzier than is commonly understood. He explains the significance of the Shapiro Delay, he surmises that the mystery of Dark Energy is sourced in the fact that physics is approaching the problem in the wrong way, and he explains why physics has become hamstrung in its pursuit of mathematizing physical reality ahead of experimental guidance. Mead explains that his views are rooted in his ability to think in pictures, as opposed to abstract symbols, and that the field needs to be more welcoming and inclusive to those who may see math as a barrier to working in physics at a high level. At the end of the interview, Mead describes his interest in current challenges with electric grid infrastructure, he explains why he has championed the work of women in science throughout his career, and he strikes an optimistic note that science always has and will continue, to provide solutions to the world’s most pressing problems.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Paul Schechter, the William A. M. Burden Professor of Astrophysics, Emeritus, at MIT discusses his time as an undergraduate student at Cornell University under the mentorship of Al Silverman and his involvement working on the Cornell synchrotron, as well as Silverman’s influence on his decision to attend Caltech for graduate school. Schechter discusses his collaboration with Bill Press on the issue of dark matter and the eventual creation of their model, the Extended Press-Schechter. He also details how studying the infall of galaxies toward the Virgo Cluster, and the subsequent paper he contributed to on the topic, were the most exciting part of his time working at the Kitt Peak National Observatory. Schechter describes his later interests in gravitational lensing and his efforts to create higher quality images for Magellan telescopes. Lastly, he discusses his desire to find the stellar mass fraction in galaxies.