Columbia University

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Michal Lipson, Eugene Professor in the Departments of Electrical Engineering and Applied Physics at Columbia University. She recounts her childhood as the daughter of a prominent physicist whose work took the family to Israel and then in Brazil, where she spent her formative years in São Paulo. Lipson explains her decision to pursue a degree in physics at Technion in Israel, where she remained to complete her graduate studies in semiconductor physics under the direction of Elisha Cohen. She describes her postdoctoral research at MIT in material science with Lionel Kimerling, and she explains the opportunities that led to her first faculty position at Cornell. Lipson describes her dual interest in pursuing basic science research and industry-relevant work. She discusses her work in photonics which led to her MacArthur fellowship and the significance of her study of slot waveguides and optical amplification in silicon. Lipson describes her subsequent work in nonlinear photonics and high-power lasers, and she explains the opportunity leading to her current position at Columbia, where she has focused on two-dimensional materials. At the end of the interview, Lipson emphasizes the fundamental importance of oscillators that have always informed her research.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Marvin Weinstein, Chief Science Officer of Quantum Insights, and emeritus physicist of SLAC. Weinstein describes the origins of Quantum Insights in partnership with David Horn and the development of a data mining algorithm called Dynamic Quantum Clustering (DQC). He recounts his upbringing in Brooklyn, his early interests in physics, and his undergraduate education at Columbia. He describes the big issues in physics at the time, including the two-neutrino experiment, and he explains his decision to remain at Columbia for his PhD to study under Gerald Feinberg. Weinstein explains how he became a postdoctoral student at the Institute of Advanced Study with the endorsement of T.D. Lee to work with Roger Dashen on K13 lepton decays. He describes his subsequent faculty appointments at Yeshiva University and then NYU, and he discusses the opportunities that led to him joining the theory group at SLAC. Weinstein describes his work on PCAC and the Higgs mechanism, and he explains how DQC originated from his interests in quantum mechanics. He explains his subsequent work in lattice field theory and then core and condensed matter physics, and he describes the changing budgetary environment at SLAC over the course of his career. At the end of the interview, Weinstein conveys optimism that his focus on the health industry will demonstrate that the adoption of DQC and its ability to analyze data will lead to better health outcomes across a spectrum of ailments.

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Kenneth Lande, professor emeritus in the Department of Physics at the University of Pennsylvania. Lande recounts his early childhood in Austria and his family’s escape to New York City from the Nazis has a young boy. Lande describes his interest in science, which he developed during his time at Brooklyn Tech, which he pursued as an undergraduate at Columbia. He describes working on bubble chambers under the direction of Leon Lederman at Nevis Lab in Westchester, and why he gave no consideration to graduate schools other than Columbia. Lande discusses his research at Brookhaven and he describes the major projects of the early 1950s including the Cosmotron and Lederman’s cloud chamber. He describes his thesis research on K mesons and explains that he accepted a job offer at the University of Pennsylvania before he defended his dissertation. Lande describes Penn’s and Princeton’s joint effort to become competitive in accelerator physics, and he explains his growing involvement in neutrino physics and work at Los Alamos in the 1960s. He explains the need to work underground when studying neutrino events caused by cosmic rays, and he describes his involvement with the Homestake mine collaboration. Lande describes his research involving gallium at the Baksan Observatory in the Soviet Union, the importance of the Kamiokande experiment, and he provides a history of neutrino physics that connects Darwin to Hans Bethe. He compares his research at Brookhaven, Fermilab, and Los Alamos, and he explains why he discourages undergraduates from memorizing anything as a way to encourage critical thinking. At the end of the interview Lande reflects on how collaborations have grown enormously over the course of his career, and looking ahead, he sees his contributions to neutrino research as prelude to something much bigger and fundamental for future discovery.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Nygren discusses: the problem of the university and specialization in addressing global challenges; reaction to the muon anomaly in the g-2 experiment at Fermilab; work on particle physics with at University of Washington; experimentation at Berkeley lab; post-doc at Columbia with Jack Steinberger working to measure the semileptonic charge asymmetry in neutral kaon decays to find evidence of CP symmetry violation; building an MWPC-based detector; experimental work with Owen Chamberlain and the Bevatron, developing the Bevalac; invention and design of the Time Projection Chamber (TPC) at Berkeley; early models of the TPC and concerns during development; Pief Panofsky; PEP-4 TPC success; involvement with doomed supercolliding super conductor (SSC) project; development of pixel-based vertex detector/smart pixel arrays; making deep-depletion charge coupled devices (CCDs) with Steve Holland; Carl Rubbia; x-ray mammography research with leading to the Philips MicroDose System; contributions to the NESTOR Project neutrino muon detector; involvement with IceCube and gathering digital data; discussion of the AMANDA array; using gas time projection chamber to look for neutrinoless double beta decacy (NLDBD); collaboration with Juan José Gómez Cardenas; using biochemistry to make connections for NLDBD discoveries; the question of whether the neutrino is its own antiparticle; development of Single Molecue Fluorescence Imaging (SMFI); Q-Pix idea; progress building Q-Pix detectors; work at UTA using the Earth-Human System as a way to reorient the university toward the big picture of climate change. Toward the end of the interview, Nygren reflects on his own “eureka moments,” the “failures” that led to deeper learning, his mixed feelings about the future of the planet, and the belief that physics can be a training ground for the new ideas humanity will need. 

Interviewed by
David Zierler
Interview dates
May 6 & 25, 2021
Location
Video conference
Abstract

Interview with David G. Hitlin, Professor of Physics at California Institute of Technology. Hitlin discusses his thesis work on high-resolution muonic X-ray studies with his advisor and mentor Chien-Shiung Wu, and his subsequent transition to elementary particle physics at SLAC. He relates his experiences with kaon physics as a member of Mel Schwartz’s group at SLAC and Stanford. As a member of the Richter group at SLAC he worked on the Mark II experiment and then founded the Mark III experiment at SPEAR. After moving to Caltech in 1979, he worked on the SLD experiment at the SLC and then as founding Spokesman of the BABAR experiment at PEP-II. The interview ends with a discussion of his current involvements with the Fermilab experiment Mu2e and the nascent SLAC experiment LDMX.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Marc Kamionkowski, William R. Kenan, Jr. Professor of Physics and Astronomy at Johns Hopkins University. He discusses his family heritage of Ashkenazi Jews who left Eastern Europe for Argentina, and his father’s medical research which took the family to Cleveland. Kamionkowski recounts his childhood in Shaker Heights, and he describes his undergraduate work at Washington University, where he switched from pre-med to physics to work with Marty Israel and Joe Klarmann. Despite his lack of preparation, Kamionkowski explains his admission to the University of Chicago, and he describes “the bug” that made him focus on physics and drive to succeed in quantum mechanics and understand quantum field theory. He discusses his thesis research under the direction of Michael Turner on energetic neutrinos from WIMP annihilation in the sun. Kamionkowski discusses his post-doctoral research at the Institute for Advanced Study where he was in Frank Wilczek’s particle theory group. He describes his first faculty appointment at Columbia and how experimental advances had opened up opportunities in cosmology. He explains his decision to move to Caltech because of its strength in theoretical astrophysics and where he became director of the Moore Center. Kamionkowski discusses his subsequent move to Johns Hopkins, and he surveys his recent projects on the Hubble Tension and early dark energy. At the end of the interview, Kamionkowski explains why he has always valued research that bridges the divide between theory and experimentation and why he expects this will continue to inform his broad research agenda.

Interviewed by
Robert Crease
Interview dates
January 9, 10 & 18, 2016
Location
Amherst, MA
Abstract

Interview with Toichiro Kinoshita, a Japanese-born physicist who is best known for pioneering the value of muon g-2, the anomalous magnetic moment of the muon. Kinoshita describes his education—Daiichi High School, Tokyo University—how he avoided military service during World War II, and meeting and marrying his wife, Masako Matsuoka. He describes his introduction to quantum electrodynamics and renormalization through papers by Dyson and Feynman. His early research also involved work on the C-meson theory developed by Sakata. After the war, Kinoshita came to the United States to the Institute for Advanced Study, then as a postdoc at Columbia in 1954. In 1955 Kinoshita moved to Cornell. He became particularly interested in making calculations to test the theory of quantum electrodynamics. He describes his introduction to computers at Princeton, using von Neumann’s computer. The interview covers how he became interested in calculating g-2 at CERN in 1966, and his subsequent efforts, the first being the sixth order calculation, where the light-by-light diagram enters for the first time. He describes his efforts doing the eighth order calculation, and his collaboration with Makiko Nio, as well as his calculations of the tenth order. Physicists whom he describes more than briefly include Kodaira, Tomonaga, Nambu, and Nio. Near the end, Kinoshita describes the importance of g-2 experiments, and his recent work. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Renata Wentzcovitch, professor of Applied Physics and Applied Mathematics and Earth and Environmental Sciences at Columbia University. Wentzcovitch recounts her childhood in Brazil, and she describes how her grandfather sparked her interest in science early on. She describes her education at the University of São Paulo’s Institute of Physics where she developed an interest in density functional theory. Wentzcovitch discusses her interest in pursuing a graduate degree in the United States, and her decision to attend UC Berkeley and study under the direction of Marvin Cohen. She describes her thesis research on pseudopotential plane-wave codes and super-hard materials such as boron nitride and diamonds. Wentzcovitch explains the impact of High Tc Superconductivity on both her career and the field generally, and she describes her postdoctoral research with joint appointments at Brookhaven and Stony Brook on evolving electronic wavefunctions via classical dynamics. She discusses her subsequent work with Volker Henie at Cambridge to study silicate perovskite, which in turn led to her first faculty appointment at the University of Minnesota. Wentzcovitch describes the importance of Minnesota’s Supercomputing Institute for her research, and she explains how her research focused more centrally on geophysics and the thermo-elasticity of minerals and their aggregates. She describes the founding of the Virtual Laboratory for Earth and Planetary Materials and explains her decision to join the faculty at Columbia and her involvement with VLab and the study of exchange-correlation functionals to address electronic interactions. At the end of the interview, Wentzcovitch discusses her current work on developing codes for thermodynamic computations and seismic tomography, and she conveys the value of pursuing international collaborations to fit her broad and diverse research agenda.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with John Regazzi, managing director of Akoya Capital. Regazzi provides a business executive’s perspective on the future of work after the pandemic, and he recounts his childhood in Brooklyn and his largely Catholic school education. Regazzi explains his initial interest in entering the seminary to become a priest before he decided to pursue a secular education in experimental psychology at St. John’s University. He discusses his graduate work in business at Columbia University and his developing interests in information science, which he developed at Northern Illinois University. Regazzi describes his subsequent work at the Foundation Center and then at Rutgers where he earned a PhD in information sciences. He explains how this research led to his career in publishing, first at the H.W. Wilson Company and then at Elsevier, where he rose to lead the company in New York. He narrates how and when digital media and the internet became central to the publishing industry, and he explains how he navigated these transitions. Regazzi describes his experiences on September 11 and the impact of this on Elsevier. He discusses his retirement, his decision to become a Dean at Long Island University, and his involvement with AIP and the key issue about making AIPP a separate organization. Regazzi describes his work as Chairman of the AIP board and the central work of finding a CEO. He explains why Michael Moloney became the successful candidate, and how Regazzi put his expertise in technical scientific publishing to the benefit of both AIP and AIPP. At the end of the interview, Regazzi reflects on his career and emphasizes the importance of identifying innovation in business, and he conveys optimism that the publishing industry will continue to evolve and adapt well into the future.