In this interview, David Zierler, Oral Historian for AIP, interviews Nicholas Samios, Director Emeritus of Brookhaven National Laboratory. He describes his family’s Greek heritage and he recounts his childhood in Manhattan and the value of the education he received at Stuyvesant High School. He describes his decision to attend Columbia as an undergraduate, where he studied under Jack Steinberger, Polycarp Kusch, and I.I. Rabi. Samios explains his decision to remain at Columbia for graduate school, and he explains some of the exciting things that were happening in particle physics then, including the use of cloud chambers to discover the “strange particles” called lambdas and thetas. He describes his dissertation research studying these particles using bubble chambers and searching for parity violation, and he explains his interest in the research at the Nevis Cyclotron in Westchester. Samios discusses his postdoctoral research at Columbia before accepting a position at Brookhaven, which was in the middle of building the Alternating Gradient Synchrotron, and he describes the difference between this work on pions and what Panofsky was doing with electrons at Stanford. He describes his subsequent work designing neutrino beams and his contribution to the discovery of the baryon charm, and he describes his tenure as chair of Brookhaven’s physics department and his efforts to produce complementary and not redundant work with the other National Labs. Samios recounts his time as Director at Brookhaven, and he describes in detail the ISABELLE project and why it was cancelled by the Reagan administration. He connects the fall of ISABELLE with the origins and ultimate failure of the SSC and the inevitable loss of leadership the U.S. experienced in high energy physics. Samios discusses why the RHIC endeavor delayed his retirement and the significance of RHIC’s discovery of the quark-gluon plasma. At the end of the interview, Samios surveys the fundamental discoveries that occurred over his career on the Standard Model and parity conservation, the ongoing mystery of dark matter, and he outlines the many ways that particle physics has positively influenced technology and human well-being.