Harvard University

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with James David Litster, Professor Emeritus at MIT. Litster recounts his childhood in Toronto, then Edmonton and back to Toronto for high school. He explains the importance of Sputnik both on his interests and for the support of science generally, and he describes his undergraduate education in engineering physics at McMaster University. Litster describes his graduate work at MIT, where he focused on experimental solid-state physics working under the direction of George Benedek. He explains his contributions to phase transition research, and he explains the opportunities leading to his postdoctoral research and faculty appointment at MIT. Litster describes his entrée into the world of liquid crystals and Landau theory working with de Gennes in Paris. He explains the origins of the joint MIT-Harvard Health Science and Technology program and he describes some of his scientific and administrative achievements at Vice President for Research at MIT and as a member of the MIT Nuclear Reactor Safeguards Committee. At the end of the interview, Litster reflects on some of the major advances that have been achieved in condensed matter physics over the course of his career, and how much more interdisciplinary science generally has become.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Peter Galison, Joseph Pellegrino University Professor at Harvard. Galison describes his numerous and overlapping appointments across Harvard, which allow him to teach in both Physics and History of Science, as well as the Philosophy and Art, Film, and Visual Studies Departments. He recounts his upbringing in Manhattan and a formative year he spent in Paris doing plasma physics before enrolling at Harvard as an undergraduate. Galison talks about the impact of the course Math 55 and why early on he knew he wanted to pursue a course of study that combined science with the arts, which ultimately coalesced into a course of study on history of science with a focus on physics. He describes the intellectual influence of Clifford Geertz and his anti-Vietnam war activism at Harvard, and he conveys the excitement surrounding fundamental discoveries in particle physics in the late 1960s and early 1970s. Galison discusses his postgraduate year at Cambridge where he worked on the philosophy of relativistic quantum mechanics, and he explains his decision to return to Harvard for his thesis work. He discusses his entrance into the Harvard Society of Fellows with the support of Steve Weinberg and Ed Purcell, and he explains how his interests in the unified field theories of Weinberg-Salam-Glashow informed his dissertation work in physics and history of science. Galison traces the origins of his interest in the duality of Big Science and Small Science and the considerations he faced in choosing between physics and history of science for his postdoctoral work. He explains his decision to focus on the latter at Stanford where he joined what would come to be known as the “Stanford School” and how these collaborations informed his book How Experiments End. Galison describes his interest in experimentation as labor history and he discusses his connection to the physics department and to SLAC during his time at Stanford. He discusses the philosophical connotations around the idea that the concept of a multiverse is not science because it is not testable, and he mounts a defense of the future utility of string theory by drawing a distinction between what it demonstrates now against what it will demonstrate with further advance. Galison discusses his contributions to the Black Hole Initiative and the Event Horizon Telescope collaboration, and he surveys the current advances made possible by AI and machine learning. He traces his interest in using film as a medium for scholarly research for its ability to convey a “density” in human interaction that is not achievable in print, and he explains why the notion of government secrecy bridges his interest in physics and social systems. Galison reflects on his own decisions as a graduate student and the lessons he has tried to pass on to his students. At the end of the interview, Galison surveys his current interests, and connects his scholarship as an avenue to understanding the contemporary pandemic, the related challenge of the disconnect of scientific expertise and public policy, and why ultimately science will offer a path out of the crisis.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Thomas Appelquist, Eugene Higgins Professor of Physics at Yale University. Appelquist recounts his upbringing in rural Iowa and then Indiana, where he attended Catholic high school. He describes his undergraduate experience at Illinois Benedictine College and explains his attraction to attend a small school for college. Appelquist discusses his decision to attend Cornell for his PhD, and recalls that, relative to others in his cohort who went to larger schools, he had the most catching up to do in quantum mechanics. He explains the development of his thesis topic under the direction of Don Yennie, which focused on aspects of renormalization theory using the Feynman parametric approach. Appelquist contextualizes some of the broader questions in quantum field theory and quantum electrodynamics at this time, and he describes the opportunities that led him to SLAC for his postdoctoral research. He describes his interests there as focused on theories of the weak interactions, and he describes his initial faculty appointment at Harvard where he joined the particle theory group led by Shelly Glashow and Sidney Coleman. Appelquist discusses his close collaboration with Helen Quinn on how to renormalize Yang-Mills theories, and he explains his decision to take a tenured position at Yale in consideration of the culture at Harvard, where the prospects of tenure were minimal. He describes the revolutionary discoveries of asymptotic freedom, QCD, and the “November Revolution” at SLAC and Brookhaven at the time. Appelquist describes his research and administrative activities to advance the particle theory group at Yale, and his overall efforts to improve the department as chair and in particular building up the condensed matter theory group. He discusses his tenure as Dean of the Graduate School and his long-term involvement with the Aspen Center. At the end of the interview, Appelquist describes his current interests in lattice gauge theory and explains why he expects that physics will see double beta decay in the next generation of experiments.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Malcolm Roy Beasley, Sidney and Theodore Rosenberg Professor of Applied Physics, Emeritus, at Stanford. Beasley recounts his passion for basketball in high school and the opportunities that led to his undergraduate study at Cornell, where he describes his focus on engineering physics as just the right blend of fundamental and applied research. He describes his relationship with Watt Webb, who would become his graduate advisor, and the origins of BCS theory. Beasley discusses his work taking magnetization measurements on type-II superconductors and his thesis research on flux creep and resistance. He discusses his postdoctoral appointment working with Mike Tinkham at Harvard and the developments leading to reduced dimensional superconductivity. Beasley explains the technological implications in the fluctuations of the order parameter, and he describes the speed with which Harvard made him a faculty offer. He discusses the circumstances that led to him joining the faculty at Stanford, his immediate connection with Ted Geballe, and his work on A15 superconductors. Beasley explains the significance of the 1976 Applied Superconductivity Conference and the important work in the field coming out of the Soviet Union at the time. He conveys the excitement regarding amorphous silicon and how the KT transition in superconductors became feasible. Beasley describes his interest in thermal fluctuation limits and coupled oscillators, and he describes Aharon Kapitulnik’s arrival at Stanford and the origins of the “KGB” group. He describes the group’s work on alloyed-based model systems and his idea to study high-resistance SNS Josephson junctions. Beasley explains “Pasteur’s quadrant” and why the KGB group was so well-attuned to dealing with it, and he discusses the impact of computational theory on the field and specifically that of Josephson junctions on digital electronics. He surmises what quantum superconductivity might look like, and he describes his work as dean and as founding director of GLAM, and some of the inherent challenges in the “trifurcation” at Stanford between the Departments of Physics and Applied Physics and SLAC. Beasley discusses his leadership at APS and the issue of corporate reform, and he explains his role in the Schön commission and what it taught him about scientific integrity. At the end of the interview, Beasley reflects on some of the “forgotten heroes” in the long history of superconductivity, he attempts to articulate his love for physics, and he explains why the achievements of the KGB group represent more than the sum of its parts.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Sheldon Glashow, Professor of Physics Emeritus at Harvard University and Professor of Physics Emeritus at Boston University, reflects on his career and Nobel Prize winning work. He discusses his childhood friendship with Steve Weinberg and his passion for science from a young age. He reflects on his decision to attend Cornell University for undergrad and details the physics curriculum at the time. Glashow describes his time as a graduate student at Harvard University studying under Julian Schwinger. He discusses his time as a post-doc at the Institute for Theoretical Physics in Copenhagen working on the SU(2)XU(1) theory, which would later win him a Nobel prize in 1979. He speaks about working with Murray Gell-Mann while at Caltech and their collaboration on a paper together. Glashow details being hired as a full professor at Harvard University. He discusses his frequent collaboration with Alvaro De Rujula. He discusses the concept of string theory and how it has evolved over the years. He discusses the loss of the superconducting super collider and reflects on where particle and theoretical physics may be today had it been built. Lastly, Glashow reflects on his goals for "Inference: International Review of Science", of which he is the editor-at-large.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Raman Sundrum, distinguished university professor of physics at the University of Maryland. Sundrum recounts his childhood in India, Maryland, and Australia and he describes his life as the child of an international economist with the UN and the World Bank, and a pediatrician. He describes his undergraduate experience at Sydney University where he majored in physics and where he learned that his abilities were in theory. Sundrum discusses his time as a graduate student at Yale, where he was accepted to the math department, and he explains how he immediately shifted over to physics. He explains his initial difficulty settling on a research focus under the direction of Laurence Krauss before he developed a relationship with Mark Soldate and settled on thesis research on particle theory beyond the Standard Model. Sundrum discusses his postdoctoral work at Berkeley, where he spent time at the Lawrence Berkeley Laboratory. He describes being recruited by Howard Georgi to do postdoctoral work at Harvard, and he explains how he collaborated with Lisa Randall and how the Randall-Sundrum papers originated. Sundrum describes the impact of this collaboration on research in supersymmetry, and he explains the events leading to his tenure at Johns Hopkins. He explains how his research focus shifted to cosmology and he discusses his decision to switch to a faculty position at Maryland, where he became director of the Center for Fundamental Physics. At the end of the interview Sundrum explains his longstanding fascination with metaphysical ideas, and he reflects on the importance of developing intellectual maturity over the course of one’s career.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Steven Kivelson, Prabhu Goel Family Professor of Physics at Stanford University. Kivelson recounts his childhood in Los Angeles as the son of academic scientists, and he describes his transition from career ambitions in the law toward physics. He discusses his undergraduate experience at Harvard, and he describes his lack of appreciation of the stature of many of the physics professors, such as his advisor Paul Martin, whom he knew first as a friend of his parents. Kivelson explains his decision to continue at Harvard for his graduate degree, and he discusses how he developed his interest in amorphous semiconductors under the guidance of Dan Gellat. He recounts his postdoctoral work at UC Santa Barbara, where he worked with Bob Schrieffer on the physics of conducting polymers. Kivelson discusses his first faculty position at Stony Brook, and he discusses the excellent group of graduate students he advised during his tenure there. He discusses some of the broader research questions in condensed matter of the time, including the significance of macroscopic quantum tunneling, invented by Tony Leggett. Kivelson explains his reasons for moving to UCLA, and he discusses Ray Orbach’s efforts to make recruitment a priority there. He discusses his long interest in fractionalization with regard to conducting polymers to be generalized to spin liquids, and his move to Stanford, which attracted him in part because of the condensed matter experimental group. At the end of the interview, Kivelson discusses his current research interests in exploring well-controlled solutions of paradigmatic models of strongly correlated electron systems, and he explains why the concept of a grand unified theory of physics is not a scientific but rather a religious proposition.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

This is an interview with Carol Davis on the occasion of her retirement from 50 years in administrative work at the Department of Physics at Harvard University. Davis reflects on her career, on the support she has provided to students and professors alike, and she explains the ways the department has changed over the years.

Interviewed by
David Zierler
Interview dates
July 28, August 18, September 4 & 11, 2020
Location
Video conference
Abstract

Interview with William H. Press, Leslie Suringer Professor in Computer Science and Integrative Biology at the University of Texas at Austin. Press recounts his childhood in Pasadena and the influence of his father Frank Press, who was a prominent geophysicist, Caltech professor, and who would become science advisor to President Jimmy Carter. He describes the impact of Sputnik on his budding interests in science, and he discusses his undergraduate experience at Harvard, where Dan Kleppner, Norman Ramsey, Ed Purcell and Dick McCray were influential in his development, and where he realized he had an aptitude for applying abstract equations to understanding physical reality. Press describes trying his hand with experimentation in Gerald Holton’s high-pressure physics lab, he recounts his involvement in student activism in the late 1960s, and he discusses his involvement in computer hacking in its earliest form. He explains his decision to attend Caltech for graduate school and his interest in studying with Dick Feynman and Kip Thorne. Press describes the opportunity leading to his work at Lawrence Livermore, how he got involved with Thorne’s group of mathematical general relativists, the origins of Thorne’s work on gravitational waves, and his collaborations with Saul Teukolsky and Paul Schechter. He describes the formative influence of Chandrasekhar. Press discusses his first faculty position at Princeton where he joined John Wheeler’s relativity group, and he describes his research interests flowing more toward astrophysics. He explains the opportunities leading to his tenure at Harvard, where he was given separate appointments in physics and astronomy and where he founded theoretical astrophysics within the Center for Astrophysics. Press describes his entrée into science policy work in Washington with the NSF Physics Advisory Committee and then later on the National Academy of Science and the National Research Council, and he explains the origins of his long-term association with the JASON Study Group. He describes his interest in gravitational collapse, Ia supernovae and galaxy formation, and why the study of black holes reinvigorated the field of general relativity. Press describes the singular genius of Freeman Dyson, and he recounts his contributions to nuclear risk reduction in science policy and his service with the Defense Science Board and the Institute for Defense Analyses. He discusses his tenure as chair in Harvard’s Department of Astronomy, his experience with the Numerical Recipes books, and his collaboration with Adam Riess and Robert Kirshner. Press recounts his decision take a position at Los Alamos as Deputy Director to John Browne, he describes his education there in the concept of leadership which he never received in his academic career, and he provides his perspective on the Wen Ho Lee spy case and the existential crisis this caused at the Lab. He describes the Lab’s role in the early days of computational biology and how this field sparked his interest. Press contextualizes this interest within his conscious decision not to stay connected to astrophysics during his time at Los Alamos, and he explains the opportunity leading to him joining UT-Austin where he remains invested in computational biology. He describes his work for the President’s Council of Advisors in Science and Technology during the Obama administration, he describes Obama’s unique interest in science and science policy, and he narrates the difficulties in the transition to the Trump administration. Press reflects on what it means to be a member of the rarified group of scientists who did not win a Nobel Prize but who were advised by and taught scientists who did. At the end of the interview, Press explains that he has always been a dilettante, which has and will continue to inform how he devotes his time to science, service, and policy matter, and he advises young scientists to aspire to mastery in a specific discipline early in their career before branching out to new pursuits.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Feryal Ozel, professor of astronomy and physics at the University of Arizona. Ozel recounts her childhood and family background in Istanbul and how her interest in science was fostered both at home and at the all-girls international school she attended through 12th grade. She describes the opportunities that led to her enrollment at Columbia University for her undergraduate education, where she majored in physics and applied math and where Jacob Shaham influenced her interest in neutron stars. She describes a formative summer internship at CERN where she worked on supersymmetric decays of the Higgs boson, and a postgraduate year at the Niels Bohr Institute, before she began her graduate work at Harvard. Ozel discusses her thesis research on magnetars under the direction of Ramesh Narayan and she describes her postdoctoral position at the Institute for Advanced Study as a Hubble fellow. She describes the academic and family considerations that made Arizona an attractive option and she explains the mechanics behind funding from NASA and the NSF. Ozel describes her favorite physics classes to teach, how she sees her role as a mentor to women students and students of under-represented groups, and she surveys recent developments in neutron star astrophysics and the interaction of gas and black holes. She discusses her contributions to the Event Horizon collaboration, and she relates her ideas on the significance of seeing a photograph of a black hole without needing observational evidence to know that black holes exist. Ozel describes her motivations in serving in scientific advisory roles and the importance of science communication and how advances in computational power have revolutionized astrophysics. At the end of the interview, Ozel discusses the outstanding question mark about making gravity compatible with how we understand the subatomic world and how this serves as a starting point for future research oriented toward fundamental discovery, and why she is particularly interested in continuing to work on black hole imaging.