Harvard University

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with James David Litster, Professor Emeritus at MIT. Litster recounts his childhood in Toronto, then Edmonton and back to Toronto for high school. He explains the importance of Sputnik both on his interests and for the support of science generally, and he describes his undergraduate education in engineering physics at McMaster University. Litster describes his graduate work at MIT, where he focused on experimental solid-state physics working under the direction of George Benedek. He explains his contributions to phase transition research, and he explains the opportunities leading to his postdoctoral research and faculty appointment at MIT. Litster describes his entrée into the world of liquid crystals and Landau theory working with de Gennes in Paris. He explains the origins of the joint MIT-Harvard Health Science and Technology program and he describes some of his scientific and administrative achievements at Vice President for Research at MIT and as a member of the MIT Nuclear Reactor Safeguards Committee. At the end of the interview, Litster reflects on some of the major advances that have been achieved in condensed matter physics over the course of his career, and how much more interdisciplinary science generally has become.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Peter Galison, Joseph Pellegrino University Professor at Harvard. Galison describes his numerous and overlapping appointments across Harvard, which allow him to teach in both Physics and History of Science, as well as the Philosophy and Art, Film, and Visual Studies Departments. He recounts his upbringing in Manhattan and a formative year he spent in Paris doing plasma physics before enrolling at Harvard as an undergraduate. Galison talks about the impact of the course Math 55 and why early on he knew he wanted to pursue a course of study that combined science with the arts, which ultimately coalesced into a course of study on history of science with a focus on physics. He describes the intellectual influence of Clifford Geertz and his anti-Vietnam war activism at Harvard, and he conveys the excitement surrounding fundamental discoveries in particle physics in the late 1960s and early 1970s. Galison discusses his postgraduate year at Cambridge where he worked on the philosophy of relativistic quantum mechanics, and he explains his decision to return to Harvard for his thesis work. He discusses his entrance into the Harvard Society of Fellows with the support of Steve Weinberg and Ed Purcell, and he explains how his interests in the unified field theories of Weinberg-Salam-Glashow informed his dissertation work in physics and history of science. Galison traces the origins of his interest in the duality of Big Science and Small Science and the considerations he faced in choosing between physics and history of science for his postdoctoral work. He explains his decision to focus on the latter at Stanford where he joined what would come to be known as the “Stanford School” and how these collaborations informed his book How Experiments End. Galison describes his interest in experimentation as labor history and he discusses his connection to the physics department and to SLAC during his time at Stanford. He discusses the philosophical connotations around the idea that the concept of a multiverse is not science because it is not testable, and he mounts a defense of the future utility of string theory by drawing a distinction between what it demonstrates now against what it will demonstrate with further advance. Galison discusses his contributions to the Black Hole Initiative and the Event Horizon Telescope collaboration, and he surveys the current advances made possible by AI and machine learning. He traces his interest in using film as a medium for scholarly research for its ability to convey a “density” in human interaction that is not achievable in print, and he explains why the notion of government secrecy bridges his interest in physics and social systems. Galison reflects on his own decisions as a graduate student and the lessons he has tried to pass on to his students. At the end of the interview, Galison surveys his current interests, and connects his scholarship as an avenue to understanding the contemporary pandemic, the related challenge of the disconnect of scientific expertise and public policy, and why ultimately science will offer a path out of the crisis.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Thomas Appelquist, Eugene Higgins Professor of Physics at Yale University. Appelquist recounts his upbringing in rural Iowa and then Indiana, where he attended Catholic high school. He describes his undergraduate experience at Illinois Benedictine College and explains his attraction to attend a small school for college. Appelquist discusses his decision to attend Cornell for his PhD, and recalls that, relative to others in his cohort who went to larger schools, he had the most catching up to do in quantum mechanics. He explains the development of his thesis topic under the direction of Don Yennie, which focused on aspects of renormalization theory using the Feynman parametric approach. Appelquist contextualizes some of the broader questions in quantum field theory and quantum electrodynamics at this time, and he describes the opportunities that led him to SLAC for his postdoctoral research. He describes his interests there as focused on theories of the weak interactions, and he describes his initial faculty appointment at Harvard where he joined the particle theory group led by Shelly Glashow and Sidney Coleman. Appelquist discusses his close collaboration with Helen Quinn on how to renormalize Yang-Mills theories, and he explains his decision to take a tenured position at Yale in consideration of the culture at Harvard, where the prospects of tenure were minimal. He describes the revolutionary discoveries of asymptotic freedom, QCD, and the “November Revolution” at SLAC and Brookhaven at the time. Appelquist describes his research and administrative activities to advance the particle theory group at Yale, and his overall efforts to improve the department as chair and in particular building up the condensed matter theory group. He discusses his tenure as Dean of the Graduate School and his long-term involvement with the Aspen Center. At the end of the interview, Appelquist describes his current interests in lattice gauge theory and explains why he expects that physics will see double beta decay in the next generation of experiments.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Malcolm Roy Beasley, Sidney and Theodore Rosenberg Professor of Applied Physics, Emeritus, at Stanford. Beasley recounts his passion for basketball in high school and the opportunities that led to his undergraduate study at Cornell, where he describes his focus on engineering physics as just the right blend of fundamental and applied research. He describes his relationship with Watt Webb, who would become his graduate advisor, and the origins of BCS theory. Beasley discusses his work taking magnetization measurements on type-II superconductors and his thesis research on flux creep and resistance. He discusses his postdoctoral appointment working with Mike Tinkham at Harvard and the developments leading to reduced dimensional superconductivity. Beasley explains the technological implications in the fluctuations of the order parameter, and he describes the speed with which Harvard made him a faculty offer. He discusses the circumstances that led to him joining the faculty at Stanford, his immediate connection with Ted Geballe, and his work on A15 superconductors. Beasley explains the significance of the 1976 Applied Superconductivity Conference and the important work in the field coming out of the Soviet Union at the time. He conveys the excitement regarding amorphous silicon and how the KT transition in superconductors became feasible. Beasley describes his interest in thermal fluctuation limits and coupled oscillators, and he describes Aharon Kapitulnik’s arrival at Stanford and the origins of the “KGB” group. He describes the group’s work on alloyed-based model systems and his idea to study high-resistance SNS Josephson junctions. Beasley explains “Pasteur’s quadrant” and why the KGB group was so well-attuned to dealing with it, and he discusses the impact of computational theory on the field and specifically that of Josephson junctions on digital electronics. He surmises what quantum superconductivity might look like, and he describes his work as dean and as founding director of GLAM, and some of the inherent challenges in the “trifurcation” at Stanford between the Departments of Physics and Applied Physics and SLAC. Beasley discusses his leadership at APS and the issue of corporate reform, and he explains his role in the Schön commission and what it taught him about scientific integrity. At the end of the interview, Beasley reflects on some of the “forgotten heroes” in the long history of superconductivity, he attempts to articulate his love for physics, and he explains why the achievements of the KGB group represent more than the sum of its parts.

Interviewed by
Michael Duncan
Interview date
Location
University of California, Berkeley
Abstract

Interview with Yuen-Ron Shen, professor emeritus of physics at the University of California, Berkeley. Shen recalls his childhood in Shanghai and later Taiwan, and he describes his father’s work as both a businessman and chemical engineering professor. He discusses his undergraduate studies in engineering in Taiwan and his decision to pursue graduate studies at Stanford. Shen recounts how his increasing interest in physics led him to study at Harvard under Nicolaas Bloembergen, where he began working on non-linear optics. He describes his continuation at Harvard for a postdoctoral position and then his acceptance of a position at Berkeley. Shen discusses the process of writing his book on non-linear optics, as well as his collaborations in the fields of solid states physics and materials science. Toward the end of the interview, Shen reflects on his involvement in scientific exchanges between the US and China over the years, and he shares his thoughts on the future of scientific relations between the US and China.

Interviewed by
Will Thomas
Interview dates
January 24 & 31, 2024
Location
Video conference
Abstract

This is a two-part interview with Gordon Baym, theoretical physicist and emeritus professor at the University of Illinois Urbana-Champaign. The interview begins with Baym’s childhood in New York where he attended Brooklyn Technical High School. Baym recalls his undergraduate studies at Cornell, as well as his graduate studies at Harvard where he studied under George Mackey and Julian Schwinger. He then discusses his postdoctoral appointment in Copenhagen and his subsequent position at Berkeley. Baym then recounts moving to Urbana and his developing interest in astrophysics which led to his work on neutron stars. Throughout the interview, Baym discusses his many areas of research including superfluids, pulsars, QCD, heavy ion collisions, and primordial neutrinos. He recalls his involvement in the development of the Brookhaven RHIC and reflects on what has been learned from colliding beam experiments. Baym also discusses the forthcoming Electron-Ion Collider, as well as his experience serving on the NSF panel that approved LIGO. The interview concludes with Baym sharing his reflections on the evolution of physics at Urbana over the years. 

Interviewed by
Donald Salisbury and Dean Rickles
Interview date
Location
California Institute of Technology
Abstract

Interview with Stanley Deser, emeritus Ancell Professor of Physics at Brandeis and a senior research associate at California Institute of Technology. The interview begins with Deser and the interviewers reflecting on the origins of general relativity and the key players involved in the field. Deser describes his time at the Institute for Advanced Study and recalls sneaking in to see one of Einstein’s seminars. He reflects on his time at Harvard under Julian Schwinger and then his transition to the Institute to work with Oppenheimer. Deser also discusses his earlier life, escaping Poland to New York and studying under Melba Phillips at Brooklyn College. Other topics include the famous Bern Conference of ’57, the beginnings of his work in general relativity, and his collaborations with Charles Misner and Richard Arnowitt. Toward the end of the interview, Deser traces his thinking on quantum gravity over time and his ideas for where the field might go in the future.

Interviewed by
Stephen Neal
Interview date
Location
Stillwater, Minnesota
Abstract

Interview with George Withbroe, retired science program director at NASA. Withbroe provides an overview of his childhood in Wisconsin where he enjoyed hunting and archery with his family. He discusses his undergraduate studies at MIT, which he remembers as being a highly competitive environment. Withbroe explains the impact of Sputnik on his interest in space science, leading him to pursue graduate studies in astronomy at the University of Michigan. He recalls discovering the joy of teaching during this time, as well as a memorable summer job at the NASA Lewis Research Center (now Glenn Research Center). Withbroe then describes his postdoctoral position at Harvard, working on the satellite program and the Orbiting Solar Observatories. He recounts his transition to the Smithsonian Astrophysical Observatory and his involvement in Skylab. Withbroe discusses going back to Harvard where he served as director of the Solar and Stellar Physics Division, before moving to NASA as the Director of the Space Physics Division. Withbroe covers topics such as securing funding for research, collaborations with the international scientific community, and the importance of diversity in science. He discusses his retirement from NASA and continuing his research at George Mason University. The interview concludes with Withbroe’s reflections on the many advisory committees he has served on, as well as his thoughts on the relationship between religion and science. 

Interviewed by
Bob Lutfi
Interview date
Location
Video conference
Abstract

In this interview organized through the Acoustical Society of America (ASA), former ASA president David Green reflects on his career in psychoacoustics. Green discusses his early education at a small high school with limited course offerings. He then describes his undergraduate studies at the University of Chicago where he earned a liberal arts degree. Green recalls his time at the University of Michigan for graduate school, where Spike Tanner and John Swets were influential to him. He discusses his PhD thesis involving heterodyne signals and then recounts his first teaching position at MIT. Green goes on to summarize his subsequent positions at the University of Pennsylvania, UC San Diego, Harvard, and the University of Florida. He also talks about the two books he wrote during those years. The interview concludes with Green’s reflections on his grad students over the years and their many accomplishments, as well as other peers who have influenced him. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Arthur Jaffe, the Landon Clay Professor of Mathematics and Theoretical Science at Harvard University. Jaffe discusses his childhood in New York, where his father was a physician. He shares memories of life during World War II and his affinity for building model airplanes and radios. Jaffe recalls the factors that led him to pursue his undergraduate degree at Princeton, where he began as a chemistry major but switched to physics. He recounts how he learned about the work of Arthur Wightman, leading him to continue at Princeton for his graduate studies. Jaffe describes his work on bosonic field theories and his time at a summer program in Montenegro. He discusses his move to Stanford and his work in the theory group at SLAC under Sidney Drell. Jaffe recalls the beginnings of his collaboration with James Glimm, as well as his move to Harvard. He explains his role in forming the Clay Mathematics Institute at Harvard and discusses his involvement in the International Association of Mathematical Physics and the American Mathematical Society. Jaffe shares his take on topics such as superstring theory, supersymmetry, and the four-dimensional problem, and reflects more broadly on changes he has seen in the field of mathematics over the years.