Harvard University

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Subir Sachdev, Herchel Smith Professor of Physics at Harvard University. Sachdev surveys his current research projects which includes a focus on Planckian metals and the Sachdev-Ye-Kitaev model, and he describes the interplay between theory and experiment on the topics he is following most closely. He describes the major advances in spin liquids research, and he recounts his childhood and Jesuit education in Bangalore. Sachdev discusses his undergraduate education at the Indian Institute of Technology and he explains the circumstances that led to his family’s emigration to the United States and his transfer to MIT where Dan Kleppner was a formative influence. He explains his decision to move to Harvard for graduate school, where David Nelson supervised his thesis research related to Nelson’s interests in developing the theory of the structure of metallic glasses. Sachdev describes his postdoctoral work on quantum spins and antiferromagnets at Bell Labs, and research advice he received from Bert Halperin. He explains his decision to join the faculty at Yale, he describes his key collaborations with Nick Read on quantum antiferromagnets and he narrates his increasing interest in cuprates. Sachdev discusses his decision to write Quantum Phase Transitions and he describes the origins of the SYK model and its relevance for black hole research. He discusses his involvement in string theory and his longstanding interests in Bose-Einstein condensation. Sachdev narrates his decision to transfer to Harvard and he describes his work in quantum chaos. He describes his professorship at the Tata Institute and the meaningfulness of being able to travel to and maintain contacts in India. At the end of the interview, Sachdev explains open issues in the theory of pseudo-gap in the high-temperature superconductors, how the SYK model may contribute to the development of a theory of quantum gravity, and he provides a long-range view of developments in the field of strange metals.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Lee Smolin, Founding and Senior Faculty Member at the Perimeter Institute with faculty appointments at the University of Toronto and the University of Waterloo. Smolin narrates the origins of the Perimeter Institute and he describes his unorthodox views on what exactly cosmology is. He describes loop quantum gravity and the notion of a “theory of everything” and why he has much love for string theory despite perceptions of the opposite. Smolin explains the utility and trappings of the Standard Model and he searches for deeper meaning in the origins and societal impact of the pandemic. He recounts his childhood in Cincinnati and his early appreciation for physics and the circumstances that led to his undergraduate education at Hampshire. Smolin explains his attraction in working with Sidney Coleman at Harvard, and why he saw a grand plan in his desire to learn quantum field theory. He describes meeting Abhay Ashtekar and his postdoctoral work at UC Santa Barbara and then at the Institute for Advanced Study. Smolin describes his formative relationship with Chandrasekhar at Chicago, his first faculty appointment at Yale, and his tenure at Syracuse where he found a strong group in relativity and quantum gravity. He explains his reasons for transferring to Penn State and his involvement in loop quantum gravity achieving a mature state amid a rapidly expanding “relativity community” throughout academic physics. He describes his time at Imperial College, where he developed a quantum gravity center with Chris Isham and he historicizes the technical developments that connected his theoretical work with observation. Smolin describes his book "The Life of the Cosmos" and his foray into thinking about biology and why he identifies as a self-conscious Leibnizian who tries to connect cosmology with the concept of a god and the centrality of astrobiology to these issues. At the end of the interview, Smolin explains why he continually returns to quantum gravity, and he conveys his interest in keeping philosophy at the forefront of his research agenda.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Stuart Shapiro, Professor of Physics and Astronomy at the University of Illinois at Urbana-Champaign. Shapiro discusses the relationship between physics and astronomy at Illinois and the shifting boundaries between cosmology, astrophysics, and astronomy. He recounts his childhood in Connecticut and his fascination with the space race. Shapiro describes his undergraduate experience at Harvard in the late 1960s and the import of the discovery of the cosmic wave background. He explains his interest in general relativity as the motivating factor for his choice of Princeton for graduate work, where he worked under the direction of Jim Peebles on gas accretion onto black holes. Shapiro describes his postdoctoral appointment at Cornell and the formative collaboration he developed with Saul Teukolsky. He describes the computational advances that propelled the field of numerical relativity and how his interactions with Kip Thorne provided an early entrée to the LIGO endeavor. Shapiro explains how he and Teukolsky challenged the cosmic censorship hypothesis and how Penrose responded to this challenge. He explains his decision to join the faculty at Illinois where he continued to work on neutrino astrophysics and the prospects for observation of hypermassive neutron stars. Shapiro explains his motivations in writing "Numerical Relativity" and he compares his reactions to the detection of gravitational waves with LIGO and the imaging of a black hole with the Event Horizon Telescope. At the end of the interview, Shapiro surveys his current interests in the dynamical problems associated with dark matter. He also conveys his deep love of sports and some unlikely coincidences he has experienced in his many years of being a fan.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Stephen Fulling, Professor of Mathematics and of Physics and Astronomy at Texas A&M University. Fulling explains the history of why his primary academic department is math and how the field of general relativity became more directly relevant to observational cosmology in the 1960s and 1970s. He recounts his middle-class upbringing in Indiana and his dual interests in math and physics which he developed during his undergraduate years at Harvard. Fulling discusses his graduate work at Princeton, where Arthur Wightman supervised his research. He explains the contemporary controversy over the Casimir effect and his interest in the Minkowski vacuum, and he discusses his postdoctoral appointment at UW-Milwaukee. Fulling describes his work on Riemannian spacetime and Robertson-Walker spacetime, and he explains the opportunity that led him to the University of London, where black holes was a focus of research. He describes meeting Paul Davies and Chris Isham and how the field started to take black holes seriously as observable entities in the 1980s. Fulling explains his longstanding interest in asymptotic expansion and he surveys more recent advances in the Casimir effect. He reflects on the Unruh effect as it approaches its 50th anniversary, and he addresses the disagreement on whether or not it has been observed and whether the Unruh effect implies Unruh radiation. At the end of the interview, Fulling discusses his current interests in the soft wall problem and acceleration radiation, and he explains his ongoing interest in seeing advances in research on Casimir energy. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Adam Riess, Bloomberg Distinguished Professor at Johns Hopkins, and Distinguished Astronomer at the Space Telescope Science Institute. Riess explains the value of his dual affiliation and his focus on calibrating the Hubble Telescope for cosmological experiments. He recounts his childhood in New Jersey and the “boot camp” style of physics education he received at MIT. Riess explains his decision to go to Harvard for his graduate work, where Bob Kirshner advised his thesis research on supernovae, while he worked closely with Bill Press on data analysis. He describes his field work at Mount Hopkins in Arizona and his use of the early internet to collect and share data, and he explains what we did not previously understand about supernovae and how that prevented an earlier understanding that the universe’s expansion is accelerating. Riess describes working closely with Brian Schmidt and Nick Suntzeff and how the High-Z team came together, and he explains the decision to use the term “accelerating” to describe the findings from the research. He describes being unprepared for the enormous reaction the High-Z team received after it published its findings, and he explains the opportunities that led to his staff appointment at Space Telescope. Riess narrates his sense of when the “buzz” for the Nobel Prize started and he related the sense of bedlam when the announcement was made and his immediate plan to make this a recognition for the entire High-Z team. He explains how the world of dark energy research has opened up since the discovery and he surveys advances in instrumentation that have propelled the field forward in the last twenty years. At the end of the interview, Riess discusses his current focus on the Hubble tension, he conveys his excitement for the launch of the James Webb Telescope, and he shares that he can’t wait to meet students that he has never seen in person after a year of pandemic-mandated virtual interactions.

 

Interviewed by
David Zierler
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Robert Cahn, Senior Scientist Emeritus at the Lawrence Berkeley Laboratory. Cahn recounts his childhood in the San Francisco area, and he describes his early interests in math and science, and he describes his undergraduate experience at Harvard, where he was influenced by Dan Kleppner and Ed Purcell. Cahn describes his summer internship at SLAC, and his travel experiences in Europe after graduating. He describes his decision to pursue graduate work at Berkeley and he explains the political tumult that had convulsed the campus in the late 1960s. Cahn discusses his work with Dave Jackson on Regge theory and his postdoctoral work at SLAC, which was focused on quark research. Cahn describes his work at the University of Washington, where he collaborated with Lowell Brown, and he explains his decision to join the physics faculty at University of Michigan, where he collaborated on several projects with Gordy Kane and where he became interested in parity violation in atoms. Cahn explains his decision to move to UC Davis, and he describes the opportunity at LBL that presented itself shortly thereafter. Cahn describes the way LBL has been integrated with the physics department at Berkeley, and he discusses his tenure as Director of the Physics division. At the end of the interview, Cahn describes LBL’s increasing involvement in cosmology, the fundamental discoveries that have been made over the course of his career, and he considers some of the philosophical or metaphysical issues that arise in investigating how the universe works.

Interviewed by
David Zierler
Interview date
Location
David Zierler
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Raymond Sawyer, professor of physics emeritus at the University of California at Santa Barbara.  Sawyer recounts his childhood growing up in many towns in the Midwest as a function of his father’s frequent job transfers. He discusses his undergraduate studies at Swarthmore College, where he developed his interest in physics, and he explains the atmosphere of wide career opportunity in the age of Sputnik. Sawyer describes his graduate research at Harvard, where he worked in Norman Ramsey’s molecular beam lab.  He explains how Julian Schwinger came to be his advisor and he describes his dissertation study on symmetries and the weak interactions of elementary particles. Sawyer discusses his postdoctoral research at CERN where he joined the theory group and where he studied the decay of a charged pion. He describes his second postdoctoral appointment at the University of Wisconsin and his work in quantum field theory at the Institute for Advanced Study which he did at the invitation of Robert Oppenheimer.  Sawyer explains the series of events leading to his decision to join the faculty at UC Santa Barbara, and he discusses his role in the formation of the Institute for Theoretical Physics. He explains his invention of charged pion condensation and he describes his work in university administration. At the end of the interview, Sawyer reflects on his contributions throughout his career, and he explains how he has kept active in the field during retirement.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Marc Kastner, Donner Professor of Physics at MIT and senior science advisor to the Science Philanthropy Alliance. Kastner explains the nomenclature transition from solid state to condensed matter physics, and he surveys the interplay between theory and experiment in his field.  He recounts his childhood in Ottawa and the influence of his father, who was an experimental physicist, and he explains the opportunities that led to his admission to the University of Chicago. Kastner explains his decision to remain at Chicago for graduate school to work under the direction of Hellmut Fritzsche on optical properties of semiconductors under pressure. He discusses his postdoctoral appointment at Harvard to work with Bill Paul on amorphous silicon, and his connection to David Adler who facilitated his faculty appointment at MIT. Kastner describes his work on amorphous semiconductors and transient excitation and his collaboration with Bob Birgeneau on high Tc. He discusses Joe Imry’s work on heterostructures and subsequent research on the Kondo effect, and how he came to understand the significance of his discovery of the single-electron transistor. Kastner discusses his tenure as department chair, director of MRSEC, and dean of science, and he explains his decision to retire and to join the Science Philanthropy Alliance. He describes his current work with his former student David Goldhaber-Gordon and his excitement over the current research on twistronics. At the end of the interview, Kastner reflects on the role of luck in his career, the centrality of technological advance in his research and what we can learn about physics more broadly as a result of the single-electron transistor.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

This is an interview with Peter Basser, Principal Investigator at NIH and Section Chief of the Laboratory on Quantitative Imaging and Tissue Sciences with the National Institute of Child Health and Human Development. Basser recounts his childhood in Long Island as the child of Austrian-Jewish immigrants. He describes his undergraduate education at Harvard and how he became interested in biology from a physics perspective. He describes his decision to stay on for graduate research where he worked on fluid dynamics in the lab of Tom McMahon. Basser discusses his postgraduate work on medical devices at Hewlett-Packard, and he describes the opportunities that led to his work at the NIH. He describes the research over the course of his tenure in magnetic stimulation and the flow of currents through nerve membranes. Basser discusses his move to NICHHD and the new opportunities becoming a Principal Investigator offered. He explains his long-range work on tensor imaging and anisotropic diffusion in brain tissue and the growing capacity to image tissue in stroke patients. Basser discusses his work in biomimetics and he explains his dual motivations in furthering both basic science and translational research that has clinical value. He explains the unique collaborative opportunities the NIH affords to work with medical doctors. At the end of the interview, Basser emphasizes the importance of continuum mechanics as a scientific concept that informs all aspects of his work, and he explains why he is excited in the future about new opportunities to study subcellular objects with NMR and other techniques.  

Interviewed by
David Zierler
Interview dates
June 4, June 18, June 30, and July 8, 2020
Location
Video Conference
Abstract

In this interview, Paul Steinhardt, the Albert Einstein Professor in Science at Princeton, recounts his childhood in Miami and his undergraduate experience at Caltech, where he became interested in theoretical physics and where Feynman played a key influence on his development. He surveys where physics is stuck and compares similar challenges that both string theory and inflation are facing, and he explains his reasons for going to Harvard for his graduate work. Steinhardt describes being a student of Sidney Coleman’s and his focus on gauge theories. He discusses his postgraduate work at IBM Research and as a Junior Fellow at Harvard, and he explains the opportunity that led to his faculty appointment at the University of Pennsylvania. Steinhardt describes his increasing interest in cosmology and the influence of Alan Guth. He explains his dual interest in condensed matter physics and where he saw commonality with his cosmological research. Steinhardt conveys the importance of his collaboration with Dov Levine and he explains why he thinks the notion of a multiverse is nonscientific but not necessarily impossible. He explains his focus on quasicrystals for a time at the exclusion of cosmology, and the circumstances leading to his decision to join the faculty at Princeton which was a central point for research on the cosmic wave background. Steinhardt discusses his work on dark energy and the cosmological constant and his related interactions with Michael Turner. He describes his efforts to link the mystery of the Big Bang with the physics that can be understood after the beginning of the universe, and why the notion of the universe having a clear beginning is problematic. Steinhardt describes his frustration with string theorists who are working on abstract rather than existential research problems, and he surveys the technological advances that could make some of the intractable puzzles in cosmology testable, including the bouncing model of cosmology. He relates an epic story of mineral mining in pursuit of earthly quasicrystals, and at the end of the interview, Steinhardt describes his search for good puzzles as the common thread that connects all of his research.