Interview with Ronald E. Mickens, Distinguished Fuller E. Callaway Professor Emeritus, Department of Physics, at Clark Atlanta University. Mickens recounts his childhood in segregated Virginia and how his entrepreneurial instincts and exposure to farm life fed into his budding interest in science. He explains the opportunities that led to his undergraduate education at Fisk University, where he majored in physics on the basis of his ability to combine his talents in math and chemistry. Mickens describes his formative summer research at Vanderbilt University on thermodynamics, and he explains the influence that his graduate advisor Wendell Holladay played in his life and his decision to continue at Vanderbilt for his graduate work. He discusses his involvement with the Civil Rights movement during his time in Nashville and how he dealt with the possibility of getting drafted for military service in Vietnam. Mickens describes his postdoctoral research in the Center for Theoretical Physics at MIT, and he explains how events that can appear to be supernatural must be explicable within the single physical world. He describes his research at MIT as a time to expand on his thesis work on Regge poles, and he explains how his work with James Young connected him with his research at Los Alamos. Mickens describes his teaching and research record while he was a professor at Fisk, and he discusses his summer research at SLAC and his focus on the Pomeron and elastic scattering. He describes his many research visits to Europe and his work at CERN where he probed the theoretical underpinnings of high energy scattering. Mickens explains his fascination with Newtonian formulation equations and the utility of his visits to the summer Aspen Institute program. He describes some of the frictions he experienced with the administration at Fisk, his work at JILA, and the professional and personal considerations that compelled him to accept a professorship at Clark Atlanta and its transformation from Atlanta University. Mickens conveys the fundamental importance that geometry and numerical modeling has played in his career, and he contextualizes his academic achievements by emphasizing that everyone in his family has achieved a terminal degree. At the end of the interview, Mickens offers a history of the origins of the National Society of Black Physicists, and explains the significance of, and the lessons that should be learned, from Edward Bouchet’s life.
Interview with Sunil Sinha, Distinguished Professor Emeritus in the Department of Physics at the University of California, San Diego. Sinha describes how he has been able to keep up his research during the COVID pandemic, and he recounts his childhood in Calcutta where he attended Catholic schools and developed his interests in math and science. He describes his undergraduate education at Cambridge where he became interested is quantum mechanics, and he explains his decision to remain there for graduate work to conduct research on neutron scattering under the direction of Gordon Squires. Sinha explains the centrality of neutron scattering to the development of condensed matter physics, and he describes the opportunities leading to his postdoctoral research at Iowa State. He discusses his work at Ames Lab and Argonne Lab, where he continued to pursue fundamental research on neutron scattering and rare earth materials. Sinha describes his research at Exxon Lab, and the start of the revolution in soft matter physics, and he explains his decision to return to Argonne at the beginning of the Advanced Photon Source project. He discusses his subsequent move to San Diego where he enjoyed a joint appointment with Los Alamos Lab and when he was able to concentrate more fully on teaching after a career spent mostly in laboratory environments. At the end of the interview, Sinha describes his current interest in spin glasses, exchange biases, and jamming theoretical computer simulations, and he explains the reason for the enduring mystery of the mechanism for high-temperature superconductivity.
Interview with Wick Haxton, professor of physics at UC Berkeley. Haxton recounts his childhood in Santa Cruz and his early interests in math and science. He describes his undergraduate education at the newly created UC Santa Cruz where his initial interest was in mathematics before he was given the advice that he did “mathematics like a physicist.” Haxton discusses his graduate work at Stanford where his original intent was to study general relativity before he connected with Dirk Walecka and Bill Donnelly to focus on nuclear theory and dense nuclear matter. He discusses his postdoctoral research at the University of Mainz where he concentrated on photo-pion physics during the early days of chiral perturbation theory, and he explains the opportunities that led to his next appointment at the LAMPF facility at Los Alamos. Haxton emphasizes the excellence of both his colleagues and the computational capacity at the Lab, and he describes his faculty appointment at Purdue and the solar neutrino experiment he contributed to in Colorado. He explains the opportunities that led to him joining the faculty at the University of Washington where the DOE was about to fund the Institute for Nuclear Theory. Haxton explains the “breakup” between nuclear theory and particle theory and how the INT addressed that. Haxton discusses the opportunities afforded at the INT to engage in nuclear astrophysics and he explains the rise and fall of the Homestake DUSEL project. He explains his decision to go emeritus at UW and to join the faculty at UC Berkeley and to be dual hatted at the Berkeley Lab, and he describes his tenure as department chair. At the end of the interview, Haxton describes his current work organizing the new Physics Frontier Center and the challenges presented by the pandemic, and he credits his formative time as Los Alamos for the diverse research agenda he has pursued throughout his career.
Interview with William Herrmannsfeldt, Staff Physicist at SLAC. Herrmannsfeldt recounts his German heritage, his upbringing in Ohio, and his early interests in physics which he pursued as an undergraduate at Miami University. He discusses his graduate work on beta decay and nuclear physics at the University of Illinois, under the direction of James Allen, and he describes his postdoctoral appointment at Los Alamos where he made detectors for bomb tests. Herrmannsfeldt explains the connection between his work at Los Alamos on electron optics and his initial research at SLAC, and he describes his work on linear accelerators. He describes his tenure as Secretary of the Advanced Development Group and his role at the AEC to concentrate on accelerator physics for Fermilab. Herrmannsfeldt explains the decision to move ahead with the PEP project and his LINAC work at Berkeley. Herrmannsfeldt explains the relevance of this research to nuclear fusion, and he describes some of the technical challenges in building the superconducting RF system. At the end of the interview, Herrmannsfeldt conveys the sense of fun he felt in learning new technological systems, the inherent challenges of beam dynamics, and he reflects on how SLAC has changed since its inception.
Interview with Peter Lyons, former Assistant Secretary for Nuclear Energy in the Department of Energy. Lyons describes his consulting work as an advisor to National Laboratories, for Jordan’s Atomic Energy Advisory Board, and as a Distinguished Energy Fellow at the Institute of Energy Economics of Japan. He recounts his childhood in Nevada, and he discusses his undergraduate education in physics at the University of Arizona. Lyons discusses the opportunities that led to his graduate research at Caltech where Charlie Barnes and Willy Fowler were formative influences for his work on stellar nucleosynthesis. He describes his postdoctoral appointment at Los Alamos to work on laser fusion and his work in the plasma group. Lyons explains the value of fiber optics for nuclear testing, and he describes his view of SDI when he was a program director at the Lab. He describes his work as Deputy Associate Director for Defense Research and Applications, and how the end of the Cold War was felt at the Lab and in particular for its work in securing the nuclear stockpile of the former Soviet Union. Lyons describes how the Lab adapted to post-Cold War research during his time as Deputy Associate Director for Energy and Environment, and how he became increasingly interested in civilian energy issues. He discusses how the Lab became more involved as a partner to major industrial projects, and he explains his decision to leave the Lab to work for Senator Pete Domenici as science advisor, where he was closely involved in legislation on a number of scientific projects. Lyons describes recent advances in civilian nuclear energy and why hydrogen will be a significant player in the energy future. He discusses his tenure at NRC Commissioner, and his appointment at the Department of Energy with the incoming Obama administration. Lyons explains the impact of the Fukushima disaster on broader discussions relating to civilian nuclear energy, and he explains his decision to retire and the satisfaction he has felt as many of the program he contributed to continue to grow. At the end of the interview, Lyons provides a broad view on where civilian nuclear energy is on the right track as part of a carbon neutral future, and where he sees opportunities for technical and administrative improvement.
Interview with Ambassador C. Paul Robinson, retired as President of Sandia Corporation. He discusses his advisory work since retirement, and the various ways he has remained connected to Sandia. He recounts his childhood in Memphis and his early interests in physics, and he describes the opportunities that led to his graduate research at Florida State University. Robinson describes his thesis work under the direction of Robert H. Davis, who headed the nuclear accelerator laboratory, where he worked on alpha particle scattering on Calcium 40. He describes his interest in pursuing postgraduate work at Los Alamos, and he explains how the academic and the national security sides of the Lab worked to mutual benefit. He describes the Lab’s early work in internal fusion and laser-induced chemistry, and his steadily rising responsibilities at the Lab, including that for the design and certification of nuclear weapons. Robinson discusses his work on nuclear strategy and policy, and he explains the difference between mutually assured destruction and maintaining a second-strike capability. He explains his decision to leave Los Alamos in 1985, and the circumstances leading to him becoming Head of the US Delegation and Ambassador and Chief Negotiator during nuclear testing talks with the Soviet Union. Robinson discusses how the end of the Cold War reformulated U.S. nuclear weapons policy, and the circumstances that led to him joining Sandia. He conveys his pride in Sandia’s leadership work on technology transfer and applying supercomputing toward energy security. At the end of the interview, Robinson reflects on what he has learned in his career in U.S. national security policy, and he speculates on the threats the U.S. faces in an uncertain future.
Interview with Warren W. Buck, Chancellor Emeritus, Professor of Physics Emeritus at the University of Washington at Bothell, and Adjunct Professor of Physics and Special Advisor to the President for Equity in the 21st Century at William and Mary. Buck recounts his upbringing in segregated Washington DC, his early interests in science, and the opportunities that led to his admission to Lincoln University for his undergraduate degree before transferring to Morgan State. He discusses the racial strife and the civil rights movements of the late 1960s, his interest in physics as an undergraduate, and his decision to pursue a graduate degree at William and Mary. He explains his decision to leave after getting a master’s degree to teach at Bowie State and to be more involved in Black student organizing, and he describes his thesis research on deuteron theory under the direction of Franz Gross. Buck describes sailing in the Bahamas after graduate school and his appointments at Stony Brook and Los Alamos, and he explains his interests in nucleon-nucleon interactions. He describes a formative research year in Paris and his subsequent faculty position at Hampton University, his collaboration with Jefferson Lab, and his work introducing theoretical mesonic form factors. Buck discusses meeting Lillian McDermott and his recruitment to help build a new UW satellite campus at Bothell as chancellor. He surveys his accomplishments in that role and explains his decision to retire, and at the end of the interview, Buck discusses his interest in Buddhism and how Buddhist philosophy can be understood in the context of nuclear theory.
Interview with Zane Arp, director for Biomedical Physics at the FDA. Arp provides an organizational overview of where his office sits within the FDA and its key institutional partners throughout and beyond the federal government. He recounts his childhood in Texas and his undergraduate experience at Angelo State where he majored in chemistry. Arp explains his decision to pursue a PhD in physical chemistry at Texas A&M with a focus on quantum chemistry through spectroscopy, and he describes his postgraduate work at Los Alamos on laser-induced breakdown spectroscopy. He discusses his subsequent work at Wye Laboratories and Johnson Space Controls in support of the International Space Station. Arp describes his next job at GlaxoSmithKline to work on pharmaceutical development and where he grew into management leadership roles. He describes the opportunities that led to him joining the FDA and he describes his game plan for improving the biomedical device research and regulatory process. Arp explains why this is a long-term proposition and he describes how COVID has, and has not changed FDA’s regulatory environment. At the end of the interview, he reflects on what shifts he been able to put in place so far at the FDA and why his office truly benefits from having a mission statement.
Interview with Pierre Ramond, Distinguished Professor of Physics at the University of Florida. Ramond recounts childhood in Paris, he describes his family’s experiences during World War II, and he explains that opportunities that led to his education in electrical engineering at the New Jersey Institute of Technology. He discusses his graduate degree in physics at Syracuse University to focus on general relativity and his first exposure to the earliest iterations of string theory. Ramond describes his work at Fermilab on Veneziano modelling, his postdoctoral research at Yale, and his subsequent work at Los Alamos. He describes Gell-Mann’s interest in grand unified theories and the influence of Ken Wilson. Ramond explains the excitement regarding the muon anomaly experiment at Fermilab, and he narrates his decision to join the faculty at the University of Florida. He explains how the department’s stature has risen over the past forty years, and he reflects on his involvement with the superstring revolution in 1984. Ramond describes the difference between effective and fundamental theories in particle physics and he conveys the productive intellectual ferment at the annual Aspen conferences. He describes his service work on the faculty senate and he describes his leadership position at the APS during the discovery of the Higgs. Ramond explains why he thinks supersymmetry would have been detected at a completed SSC and he reflects on receiving the Dirac medal in 2020. At the end of the interview, he discusses Einstein’s misgivings on quantum mechanics, he imagines how string theory might be testable, and he explains why he remains interested in CP violation.
In this interview, David Zierler, Oral Historian for AIP, interviews Michael Anastasio, Director Emeritus of the Los Alamos National Laboratory. Anastasio recounts his childhood in suburban Washington DC and he describes his early intellectual pursuits in math and science. He discusses his undergraduate experience at Johns Hopkins, where his original plan was to learn enough physics to teach it at the college level. He explains his decision to pursue a graduate degree at Stony Brook, where he worked under the direction of Tom Kuo in the nuclear theory group on the effective interaction in many body systems. Anastasio describes his postdoctoral research in Europe, where he worked on the meson exchange theory for the nuclear force. He discusses his year at Brooklyn College, and he describes that circumstances leading to his work at Livermore Lab. Anastasio recounts his work on nuclear weapons stockpile issues in the “B Division,” and how Cold War security policy affected the laboratory’s mission and focus. He explains his increasing responsibilities as a division leader and then associate director at Livermore, and he discusses his work as scientific advisor to the Assistant Secretary of Energy for Defense Programs. Anastasio explains the impact of September 11 at Livermore, and he describes his tenure as director, where he was focused on maintaining the long-term viability of the lab. He describes the circumstances surrounding his decision to become director of Los Alamos and he reflects on the differences and similarities of the challenges of this new position. At the end of the interview, Anastasio describes the ongoing relevance of the research at Los Alamos in both nuclear weapons and basic science.