Manhattan Project (U.S.)

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Lee Pondrom, Professor of Physics Emeritus at the University of Wisconsin, Madison, recounts his childhood in Dallas, San Antonio and Houston and describes his early interest in science. He explains his motivations to attend Southern Methodist University, where he pursued a degree in physics. Pondrom discusses his graduate work at the University of Chicago where the long-range influence of the Manhattan Project remained strong, even in the early and mid-1950s. He describes his summer research work at Los Alamos, and his thesis research on cyclotrons and pi mesons under the direction of Albert Crewe and Uli Kruse. Pondrom conveys the feeling of excitement at the discovery of parity violation while he was a graduate student, his postdoctoral work on the Nevis cyclotron while at Columbia, and he describes his Air Force service after he defended his dissertation. He describes the opportunities leading to his tenure at the University of Wisconsin and a research agenda that included long-term projects at the Chicago cyclotron, and at Fermilab and at Argonne. Pondrom discusses his contributions to CP violation, hyperon decay and how computers have been useful over the course of the career. He describes the origins of Fermilab and his experiences at Madison during the student unrest during the late 1960s, where bombers targeted science buildings. Pondrom discusses the significance of the E8 experiment as an extension of the Garwin-Lederman experiment and the origins of the Tevatron project. He explains the ups and downs of U.S. high energy physics during the SSC years and he surmises what would be known now in particle physics had the SSC been completed. At the end of the interview, Pondrom describes his extensive collaborations in Russia and his study of Soviet-era physics, including his work on Stalin’s nuclear diplomacy.

Interviewed by
Charles Weiner
Interview date
Location
Altadena, California
Abstract

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.

Interviewed by
Alex Wellerstein
Interview date
Location
Kidder's home, Pleasanton, California
Abstract

In this interview Ray Kidder discusses topics such as: Atomic Energy Commission; Lawrence Livermore Laboratory; California Institute of Technology (Caltech); Manhattan Project; serving in the navy as a technician during World War II; finishing his undergraduate degree at Ohio State University; hydrogen bombs; nuclear weapons; laser fusion; underground nuclear testing facilities; Richard Rhodes; Theodore Maiman; Keith Brueckner; Edward Teller; Los Alamos National Laboratory; Arms Control and Disarmament Agency (ACDA); Hans Bethe; KMS Fusion.

Interviewed by
Karen Fleckenstein
Interview date
Abstract

Early contacts with Maria Goeppert Mayer, collaborations with her on uranium explosives for Los Alamos at Columbia University and on stability of neutrons at University of Chicago Nuclear Institute, reflections on meeting with Joseph Mayer while she was terminally ill. Also prominently mentioned is: University of California at San Diego.

Interviewed by
Alex Wellerstein
Interview date
Location
York’s home, La Jolla, California
Abstract

Berkeley Radiation Laboratory; Laurence Livermore National Laboratory; Manhattan Project; classification and declassification issues; use of computers; reminiscences about colleagues, including Edward Teller, Norris Bradbury, Howard Morland, Keith Brueckner, John von Neumann, Stirling Colgate.

Interviewed by
Leon Gortler
Interview date
Location
Medford, New Jersey
Abstract

Childhood and major influences; college education at Harvard University; position at Edward C. Worden Co., position at Columbia University's chemistry department as a graduate student and instructor, as a professor, and as the department chairman; history of chemistry department's administration. Major emphasis on his research results and papers spanning his entire career; Hammett equation and acidity theory; his contact with students Henry P. Treffers, Martin Paul, Lois Zucker. Work during the World War I and World War II; consulting work; development of the field of physical organic chemistry and opinion of the future of chemistry. Philosophy of research; talk with Mrs. Hammett. Also prominently mentioned are: Roger Adams, Adkins, Bernard Auchincloss, Paul Doughty Bartlett, Hal Beans, Ernst Bodenstein, Marston Bogert, Branch, Breslow, Johannes Brn︣sted, Joseph Bunnett, Burkhardt, Mary Caldwell, Ray Christ, James Bryant Conant, Ralph Connor, Alder J. Deyrup, John R. Dunning, Henry Eyring, Leo Flexser, George S. Forbes, Ernie Grunwald, Janet Hammett, Arthur R. Hantzsch, Christopher Ingold, Iserman, James Kendall, Elmer Kohler, A. B. Lamb, Irving Langmuir, Jose Levy, Gilbert Newton Lewis, Willard Frank Libby, Bill McEwan, J. L. R. Morgan, Rosetta Natoli, J. M. Nelson, James Flack Norris, Louis Plack, Michael Polanyi, T. W. Richards, R. Robinson, Smith, Alexander Smith, E. F. Smith, Hermann Staudinger, Julius Stieglitz, Arthur Thomas, Harold Clayton Urey, George Walden, Chaim Weizmann, E. C. Worden, Theodore Zucker, Dick Zuemer; Alpha Chi Sigma Fraternity, American Chemical Society, Commercial Solvents Co., E. I. duPont de Nemours & Company, Inc., Eidgenössische Technische Hochschule at Zurich, Johns Hopkins University, Manhattan Project, Petroleum Research Fund, Rohm and Haas Co., United States President's Science Advisory Committee, Universal Oil Production Corporation, University of California at Los Angeles, University of Illinois, and University of Wisconsin.

Interviewed by
Leon Gortler
Interview date
Location
Medford, New Jersey
Abstract

Childhood and major influences; college education at Harvard University; position at Edward C. Worden Co., position at Columbia University's chemistry department as a graduate student and instructor, as a professor, and as the department chairman; history of chemistry department's administration. Major emphasis on his research results and papers spanning his entire career; Hammett equation and acidity theory; his contact with students Henry P. Treffers, Martin Paul, Lois Zucker. Work during the World War I and World War II; consulting work; development of the field of physical organic chemistry and opinion of the future of chemistry. Philosophy of research; talk with Mrs. Hammett. Also prominently mentioned are: Roger Adams, Adkins, Bernard Auchincloss, Paul Doughty Bartlett, Hal Beans, Ernst Bodenstein, Marston Bogert, Branch, Breslow, Johannes Brn︣sted, Joseph Bunnett, Burkhardt, Mary Caldwell, Ray Christ, James Bryant Conant, Ralph Connor, Alder J. Deyrup, John R. Dunning, Henry Eyring, Leo Flexser, George S. Forbes, Ernie Grunwald, Janet Hammett, Arthur R. Hantzsch, Christopher Ingold, Iserman, James Kendall, Elmer Kohler, A. B. Lamb, Irving Langmuir, Jose Levy, Gilbert Newton Lewis, Willard Frank Libby, Bill McEwan, J. L. R. Morgan, Rosetta Natoli, J. M. Nelson, James Flack Norris, Louis Plack, Michael Polanyi, T. W. Richards, R. Robinson, Smith, Alexander Smith, E. F. Smith, Hermann Staudinger, Julius Stieglitz, Arthur Thomas, Harold Clayton Urey, George Walden, Chaim Weizmann, E. C. Worden, Theodore Zucker, Dick Zuemer; Alpha Chi Sigma Fraternity, American Chemical Society, Commercial Solvents Co., E. I. duPont de Nemours & Company, Inc., Eidgenössische Technische Hochschule at Zurich, Johns Hopkins University, Manhattan Project, Petroleum Research Fund, Rohm and Haas Co., United States President's Science Advisory Committee, Universal Oil Production Corporation, University of California at Los Angeles, University of Illinois, and University of Wisconsin.

Interviewed by
Charles Weiner
Interview date
Location
Altadena, California
Abstract

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.

Interviewed by
Charles Weiner
Interview date
Location
Altadena, California
Abstract

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.

Interviewed by
Charles Weiner
Interview date
Location
Altadena, California
Abstract

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.