National Science Foundation (U.S.)

Interviewed by
David Zierler
Interview dates
June 7, 14, 21 & 28, 2020
Location
Video conference
Abstract

Interview with Rainer Weiss, professor emeritus of physics at MIT. Weiss recounts his family history in pre-war Europe and the circumstances of his parents' marriage. He describes his childhood in New York City, and he explains his interests in experimenting and tinkering from an early age. Weiss explains the circumstances leading to his undergraduate study at MIT and his original plan to study electrical engineering before focusing on physics. He recounts his long and deep relationship with Jerrold Zacharias, who singularly championed Weiss's interests over the years. He discusses his graduate work on the hyperfine structure of hydrogen fluoride. Weiss describes his formative work with Bob Dicke at Princeton, and he explains how technological advances was beginning to offer new advances in general relativity. He explains how Dicke's influence served as an intellectual underpinning for the creation and success of LIGO. Weiss emphasizes the importance of Richard Isaacson as one of the founding heroes of LIGO, and he describes the fundamental importance of joining his research institutionally with Caltech. He describes his early research with John Mather, and the numerous administrative challenges in working with the NSF throughout the LIGO endeavor. Weiss describes the geographical decisions that went into building LIGO, the various episodes when LIGO's ongoing viability was in doubt, and how both Barry Barish and Kip Thorne contributed to ensuring its success. At the end of the interview, Weiss describes some of the sensitivities regarding who has been recognized in LIGO and who has not, in light of all the attention conferred by the Nobel prize, and he reflects on how LIGO will continue to push discoveries forward on the nature and origins of the universe.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Willy Haeberli, Professor of Physics Emeritus at the University of Wisconsin in Madison, Wisconsin. Haeberli recounts his childhood in Basel, Switzerland, and he describes his experiences as a student during World War II. He discusses his early interest in physics and his decision to pursue nuclear physics at the University of Basel under the direction of Paul Huber. Haeberli describes his graduate research on the ionization of gasses by alpha particles, and he describes the circumstances leading to his subsequent postdoctoral job at the University of Wisconsin, where he was attracted to work with Raymond Herb in accelerator physics. He explains some of the scientific and cultural adjustments in order to settle in at Madison, and he describes the central questions of the structure of atomic nuclei that propelled nuclear physics at that time. He describes his subsequent research at Duke University before returning to Madison to join the faculty, he describes his many research visits to ETH Zurich, the Max Planck Institute, Fermilab, Saclay, and at DESY in Hamburg, and he offers insight on some of the differences in approach between American and European accelerator labs. Haeberli reflects on his contributions to the study of polarized protons and deuterons and angular momentum assignments. He discusses his work developing gas targets of pure spin polarized hydrogen and deuteron atoms, and he describes the critical support of the DOE and the NSF for this research. Haeberli shares his feelings on being elected to the National Academy of Sciences, and he explains his preference teaching undergraduates to graduate students. At the end of the interview, Haeberli describes how the department of physics at Wisconsin has changes over his decades of service, and he explains how only with the benefit of historical hindsight can one distinguish the truly important advances in the field. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Mansour Shayegan, Professor of Electrical Engineering at Princeton. Shayegan recounts his family roots in Isfahan, and the political and social dynamics of growing up in Iran. He explains his decision to pursue an undergraduate education in the United States and the opportunities leading to his enrollment at MIT as an undergraduate. He describes his decision to stay at MIT for graduate school and his experiences in the electrical engineering program, where he worked with his advisor Millie Dresselhaus, during the Iranian Revolution. Shayegan describes Dresselhaus’s reputation as the “Queen of Graphite” and he describes the impact of her research on his dissertation on graphite intercalation. He discusses some of the commercial potential of his graduate research and emphasizes his primary interest in basic research and describes his postdoctoral work at the University of Maryland. He explains the origins of his interest in semiconductor physics in collaboration with Bob Park and Dennis Drew, and he describes the events leading to his faculty appointment at Princeton. Shayegan describes the work involved getting his lab and the MBE system set up, and he discusses the excellent culture of collaboration in both the physics and EE programs at Princeton. He explains recent advances in superconductivity research, and he reflects on the success he has enjoyed as a mentor to graduate students over the years. Shayegan expresses his pleasure in teaching quantum mechanics to undergraduates, and he explains his long-term interest in research on gallium arsenide. At the end of the interview, Shayegan reflects on his contributions to the field, its intellectual origins in the prediction of Bloch ferromagnetism, and the importance of securing the ongoing support from the National Science Foundation.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Feryal Ozel, professor of astronomy and physics at the University of Arizona. Ozel recounts her childhood and family background in Istanbul and how her interest in science was fostered both at home and at the all-girls international school she attended through 12th grade. She describes the opportunities that led to her enrollment at Columbia University for her undergraduate education, where she majored in physics and applied math and where Jacob Shaham influenced her interest in neutron stars. She describes a formative summer internship at CERN where she worked on supersymmetric decays of the Higgs boson, and a postgraduate year at the Niels Bohr Institute, before she began her graduate work at Harvard. Ozel discusses her thesis research on magnetars under the direction of Ramesh Narayan and she describes her postdoctoral position at the Institute for Advanced Study as a Hubble fellow. She describes the academic and family considerations that made Arizona an attractive option and she explains the mechanics behind funding from NASA and the NSF. Ozel describes her favorite physics classes to teach, how she sees her role as a mentor to women students and students of under-represented groups, and she surveys recent developments in neutron star astrophysics and the interaction of gas and black holes. She discusses her contributions to the Event Horizon collaboration, and she relates her ideas on the significance of seeing a photograph of a black hole without needing observational evidence to know that black holes exist. Ozel describes her motivations in serving in scientific advisory roles and the importance of science communication and how advances in computational power have revolutionized astrophysics. At the end of the interview, Ozel discusses the outstanding question mark about making gravity compatible with how we understand the subatomic world and how this serves as a starting point for future research oriented toward fundamental discovery, and why she is particularly interested in continuing to work on black hole imaging.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Margaret Murnane, professor of physics at the University of Colorado, Boulder, fellow at JILA, and director of the NSF STROBE Science and Technology Center. Murnane recounts her childhood in Ireland and emphasizes that, culturally, she was encouraged to pursue her interests in science from a young age. She discusses her undergraduate education at University College Cork where she focused on physics and developed her specialties in experimentation with light. Murnane describes the opportunities leading to her graduate work at UC Berkeley, where, for her thesis research, she developed a high-power femtosecond laser to create X-ray emitting plasma. She describes her first faculty appointment at Washington State University in Pullman where she continued work in ultrafast laser science, and she explains the decision to transfer to the University of Michigan at the Center for Ultrafast Optics. Murnane discusses her subsequent decision to join the faculty at JILA, where the instrumentation and opportunities for collaboration in her field were peerless. She describes the centrality of achieving very fast X-ray pulses to her field, and she describes some recent advances in applications such as EUV lithography. Murnane discusses the work that remains to be done to ensure that STEM promotes diversity and inclusivity, and she reflects on the many excellent graduate students she has mentored. At the end of the interview, Murnane conveys her excitement at the possibilities offered in the future of ultrafast lasers, including the ability of real-time microscopes that can make three-dimensional nanoscale and A-scale movies.

Interviewed by
David Zierler
Interview dates
February 26 and March 12, 2021
Location
Video conference
Abstract

Interview with John Preskill, Richard P. Feynman Professor of Theoretical Physics at Caltech, and Director of the Institute for Quantum Information and Matter at Caltech. Preskill describes the origins of IQIM as a research pivot from the initial excitement in the 1970s to move beyond Standard Model physics and to understand the origin of electroweak symmetry breaking. He emphasizes the importance of Shor’s algorithm and the significance of bringing Alexei Kitaev into the project. Preskill discusses the support he secured from the NSF and DARPA, and he recounts his childhood in Chicago and his captivation with the Space Race. He describes his undergraduate experience at Princeton and his relationship with Arthur Wightman and John Wheeler. Preskill explains his decision to pursue his thesis research at Harvard with the intention of working with Sidney Coleman, and he explains the circumstances that led to Steve Weinberg becoming his advisor. He discusses the earliest days of particle theorists applying their research to cosmological inquiry, his collaboration with Michael Peskin, and his interest in the connection of topology with particle physics. Preskill describes his research on magnetic monopoles, and the relevance of condensed matter theory for his interests. He explains the opportunities that led to his appointment to the Harvard Society of Fellows and his eventual faculty appointment at Harvard, his thesis work on technicolor, and the excitement surrounding inflation in the early 1980s. Preskill discusses the opportunities that led to his tenure at Caltech and why he started to think seriously about quantum information and questions relating to thermodynamic costs to computing. He explains the meaning of black hole information, the ideas at the foundation of Quantum Supremacy, and he narrates the famous story of the Thorne, Hawking, and Preskill bets. Preskill describes the advances in quantum research which compelled him to add “matter” to the original IQI project which was originally a purely theoretical endeavor. He discusses the fact that end uses for true quantum computing remain open questions, and he surveys IQIM’s developments over the past decade and the strategic partnerships he has pursued across academia, industry, and at the National Labs. Preskill surveys the potential value of quantum computing to help solve major cosmological mysteries, and why his recent students are captivated by machine learning. At the end of the interview, Preskill reflects on his intersecting interests and conveys optimism for future progress in understanding quantum gravity from laboratory experiments using quantum simulators and quantum gravity.

Interviewed by
David Zierler
Interview dates
July 27 and August 18, 2020
Location
Video conference
Abstract

Interview with Anne Kinney, Deputy Center Director of the NASA Goddard Space Flight Center. Kinney recounts her childhood in Wisconsin and her early interests in science. She describes her undergraduate experience at the University of Wisconsin where she pursued degrees in physics and astronomy. Kinney discusses her time in Denmark at the Niels Bohr Institute before completing her graduate work at NYU relating to the International Ultraviolet Explorer. She explains the opportunities leading to her postdoctoral appointment at the Space Telescope Science Institute in Baltimore where she focused on obtaining optical data and near-infrared data to understand spectral energy distribution for quasars and blazars. Kinney discusses her work on the aberrated Hubble Telescope and her new job at NASA Headquarters where she became head of Origins before she was transferred to Goddard where she became division direct of the Planetary Division. She describes Goddard’s efforts to promote diversity and she describes her subsequent position as chief scientist at Keck Observatory before returning to Washington to join the National Science Foundation to be head of the Directorate for Mathematical and Physical Sciences. Kinney provides a broad view of the NSF budgetary environment, and she explains the circumstances that led her back to NASA to her current work. She describes where Goddard fits into NASA’s overall mission and she explains her interest in promoting NASA in an educational framework to children. At the end of the interview, Kinney conveys her excitement about the James Webb Telescope and why she is committed to ensuring that NASA is a driver behind the broader effort to make astronomy and physics more diverse.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Sean L. Jones, Assistant Director for the Directorate for Mathematical and Physical Sciences at the National Science Foundation. Jones recounts his father’s scientific career at IBM and his own childhood in South Carolina, and the opportunities he had to pursue his interests in math and science. He discusses his undergraduate work in ceramic engineering at Clemson and the opportunities for him to become a McKnight Fellow at the University of Florida for graduate school, where he worked on increasing the luminescence of thin film phosphorous. He describes his postgraduate work at Bell Labs and how the internet bubble affected him at the turn of the century. Jones discusses his subsequent work as a professor of optical engineering at Norfolk State University and the enjoyment he derived in teaching at an HBCU. He explains why meeting Bruce Kramer at NSF was so formative and why he chose to join NSF as a program director after working at Applied Plasmonics. Jones describes the flatness of the NSF’s organizational structure and how the Obama administration’s commitment to science and technology research resonated for his program. He discusses his work at the OSTP in the Executive Branch and his tenure as Executive Secretary of the National Science Board. Jones discusses his increasing responsibilities at NSF and the overall improvement of the budgetary environment since he started. He talks about the current opportunities to expand diversity in STEM and his current work in managing research support as costs continually rise. At the end of the interview, Jones explains why the appetite for taking risk must be central to the future of good scientific policy at the national level.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Joseph DeSimone, Sanjiv Sam Gambhir Professor of Translational Medicine and Professor of Chemical Engineering at Stanford. DeSimone describes Gambhir’s pioneering work in molecular imaging, and he explains the value in his multiple departmental appointments for his research agenda. He recounts his upbringing in the Philadelphia area and his undergraduate focus on polymer chemistry at Ursinus College. DeSimone discusses his graduate research in the same field at Virginia Tech, where he studied CO2 polymers under the direction of James McGrath. He explains the opportunities that led to his appointment at UNC Chapel Hill, and he discusses the research advantage of his dual position at NCSU. DeSimone discusses his advisory work for the NSF, and he describes how he became involved in bio-nanotechnology and gene therapy research. He explains his increasing interests in entrepreneurial research. He narrates the origins of the Carbon 3D company and the possibilities he saw in 3D printing. DeSimone reflects on the fantastic financial success of the company, and he explains his decision to return to academia at Stanford, and at the end of the interview, he describes the value of Peter Thiel’s “Zero to One” approach for science research.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Lonnie Thompson, Distinguished University Professor at Ohio State University and Senior Scholar at the Byrd Polar and Climate Research Center. Thompson describes the administrative history of the Byrd Center and he surveys his current field work in ice core drilling and the role of theory in his research. He provides his perspective on how humanity should respond to climate change and why natural climate fluctuations do not explain the current climate situation. Thompson recounts his childhood in West Virginia and the opportunities that allowed him to pursue a degree in physics at Marshall University. He discusses his graduate research at Ohio State in geophysics and geology while serving in the Army Reserves, and he describes how he developed the Byrd Center. Thompson describes his field work in China and Russia and the value of drilling across the planet. He discusses his work with Al Gore on An Inconvenient Truth and he conveys his feelings about winning the National Medal of Science. Thompson describes working with his wife Ellen Mosley-Thompson as his closest collaborator and what he has learned about conveying his scientific findings to the public. He reflects on the meaning of environmental heroism and the remaining field work that needs to be done after nearly 50 years of drilling. At the end of the interview, Thompson describes his current interest in finding and preserving biodiversity and why the next frontier for ice core drilling will be on Mars and beyond.