National Science Foundation (U.S.)

Interviewed by
Lillian Hoddeson
Interview date
Location
Santa Fe, New Mexico
Abstract

This interview is part of a series conducted during research for the book Tunnel Visions, a history of the Superconducting Super Collider. It also covers a range of other topics concerning George (Jay) Keyworth’s service between 1981 and 1985 as science advisor to President Ronald Reagan. Keyworth recounts his previous career at Los Alamos Scientific Laboratory, his selection as science advisor, his access to White House policymaking via counselor to the president Ed Meese, and his own interactions with Reagan. He notes that Reagan had a faith in technological ingenuity as part of a broadly optimistic outlook on humanity. Keyworth also discusses his strong relationship with engineer and executive David Packard as well as deliberations concerning stealth technology, missile basing, the AIDS crisis, and space policy. He expresses disdain for the space station and space shuttle programs and his regret that the Reagan administration did not do more to reform NASA. He recalls spending political capital securing White House support for basic research, including the SSC and funding increases for the National Science Foundation. He argues that Brookhaven National Lab’s Isabelle collider was poorly justified whereas the SSC was an ambitious and inspiring project. Keyworth asserts that he was able to commit the White House Office of Management and Budget to pursuing the SSC before he was assigned full-time to working on the Strategic Defense Initiative ballistic missile defense program in 1983.

Interviewed by
David Zierler
Interview date
Location
Teleconference
Abstract

In this interview, Michael Turner discusses his life and career. topics include: Kavli Foundation; Kavli Institute for Cosmological Physics; Fred Kavli; Aspen Center for Physics; Rand Corporation; California Institute of Technology (Caltech); Robbie Vogt; Ed Stone; Barry Barish; SLAC National Accelerator Laboratory; B.J. Bjorken; University of Chicago; Dave Schramm; Kip Thorne; Fermi Institute / University of Chicago Institute for Nuclear Studies; Bob Wagoner; University of California, Santa Barbara; Larry Smarr; Dan Goldin; quarks-to-cosmos study; National Science Foundation; Rita Colwell; Advanced LIGO; Atacama Large Millimeter Array (ALMA); IceCube South Pole Neutrino Observatory; Department of Energy; Argonne National Laboratory; Paul Steinhardt.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Neal Lane, University Professor Emeritus and Professor Emeritus of Physics and Astronomy at Rice University, with an additional affiliation at the Baker Institute for Public Policy. Lane recounts his childhood in Oklahoma and his education at the University of Oklahoma, where Chun Lin became his thesis advisor for his research on the excitation of a sodium atom from its ground state. He discusses his postdoctoral appointment at Queen’s University of Belfast to work with Alex Dalgarno before taking a position at JILA in Boulder. Lane describes his work with Sydney Geltman and the opportunity to take a faculty position at Rice, and he discusses his role as NSF physics division director. He narrates his decision to become chancellor at the University of Colorado, Colorado Springs, before returning to Rice to serve as provost. Lane describes how the Clinton administration invited him to lead the NSF. He explains the importance of direct communication with OMB, his relationship with Al Gore, and the key guidance offered by National Academy reports. Lane describes the LIGO effort from his vantage point at the NSF, and he explains his time as director of OSTP and Assistant to the President for Science and Technology. Lane discusses his work for PCAST and in the creation of the NNSA, and he describes returning to Rice after Gore lost the presidency, where the Baker Institute allowed him an environment to continue working in science and policy. At the end of the interview, Lane emphasizes the power of human connections as the foundation of all good science and policy endeavors.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with John Spence, Richard Snell Professor of Physics at Arizona State University. Spence discusses his dual role as a Director of Science at NSF and his focus on research at the intersection of biology and physics. He recounts his childhood in Australia and his undergraduate education at Queensland University. Spence describes his graduate research on plasmons at Melbourne and the opportunities that led to his postdoctoral appointment at Oxford, where he worked with Mike Whelan and David Cockayne on quantifying atom arrangements in solids. He describes his decision to join the faculty at Arizona State, and the nascent field of high-resolution electron microscopy, which compelled him to write a book on the topic. Spence discusses his work on the structure of defects in superconductors and his collaborations with Bell Labs, and he explains the significance of the LCLS to his research. He describes the BioXFEL project, his work as part of the broader community of crystallographers, and the intellectual origins of the book "Lightspeed". At the end of the interview, Spence credits Michael Crow for bringing ASU to the forefront of so much innovation in science, and he reflects on how physics has never failed to surprise him.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Dean Zollman discusses: interests in current physics education research (PER); family background and childhood; PhD at Maryland under Carl Levinson and Manoj Banerjee; involvement in civil rights movement; postdoc at Kansas State; collaborations with Bob Fuller and Tom Campbell; involvement with American Association of Physics Teachers (AAPT); Jack Renner’s research on the intellectual development of college students; overview of the big names and ideas in PER in the early-to-mid 70s; research on how to meet students’ current developmental levels and capabilities; hands-on and visual approaches to physics learning; NSF-funded work at University of Utah, developing instructional laser discs with Bob Fuller and Tom Campbell; forays into using video for physics instruction and early application of computers to physics education; Fulbright at University of Munich; Fascination of Physics collaboration with his partner J.D. Spears; teaching quantum mechanics visually; winning the Milikan Award; the Physics InfoMall CD-ROM project; relationship with NSF; Center for Research and Innovation in STEM Education project and COVID’s damage to its realization; Oersted Medal; crossovers with field of psychology in researching how learning happens; internet-based Pathways project for high school instructors; collaborations with the International Commission on Physics Education; the excitement of helping people learn; and the hope that innovative teaching strategies will draw in a more diverse student body to solve the big physics questions of our time. Toward the end of the interview, Zollman looks forward to continuing PER both on the fundamentals of how students learn as well as on applied methods for teaching. He notes that the quest to understand the mechanisms of learning invite a more interdisciplinary approach going forward. 

Interviewed by
David DeVorkin
Interview dates
September 10 & 15, 2021
Location
Video conference
Abstract

Interview with Jay Pasachoff, Field Memorial Professor of Astronomy at Williams College. Pasachoff discusses his childhood in New York City and his early interests in astronomy, telescopes and math. He recalls participating in a summer math program at Berkeley after his high school graduation, before he enrolled at Harvard as an undergrad. He recounts being invited to partake in observational research at Sacramento Peak Observatory, where he worked with Jacques Beckers and Bob Noyes. Pasachoff then explains his decision to continue at Harvard for his graduate studies, where Bob Noyes became his thesis advisor. He remembers finishing his PhD while also working at the Air Force Cambridge Research Laboratory, doing radio astronomy work. Pasachoff discusses the events that led to his postdoc at Caltech, and his subsequent move to Williams College. Throughout the interview, Pasachoff remembers many of the solar eclipses he has observed and his research surrounding them. He also discusses the many textbooks he has written over the years. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Sandra Faber, Professor Emerita in the Department of Astronomy and Astrophysics, UC Santa Cruz and Astronomer Emerita at the University of California Observatories discusses her career and her involvement in various projects. Faber describes the relationship between these appointments, and she describes some of the benefits that remote work has allowed during the Covid-19 pandemic. She describes the DEIMOS spectrograph project as an outgrowth from her interest in galaxy formation and the centrality of steady state theory to this research. Faber discusses the importance of NSF support for her work, and she explains some of the cultural sensitivities in setting up a major telescope project in Hawaii. She explains the difference between ancient and more recent galaxy formation, and she explains how the next generation of spectrographs has surpassed what DEIMOS has been able to achieve. Faber discusses the famous optical flaw that threatened the viability of the Hubble Telescope and how this issue was resolved and the import of the CANDELS project. She explains the value of advanced computing for black hole quenching models, and she discusses her long-term collaboration with Chinese scientists and some of the political and international considerations inherent in these partnerships. Faber describes the origins of the Osterbrock Leadership Program and its value for fostering the careers of the next generation of scientists. At the end of the interview, Faber describes the meaning of “Cosmic Knowledge,” and she explains how this concept of humanity’s greater appreciation of our place in the universe can have ethically positive and long-lasting impacts beyond astronomy.

Interviewed by
David Zierler
Interview dates
June 7, 14, 21 & 28, 2020
Location
Video conference
Abstract

Interview with Rainer Weiss, professor emeritus of physics at MIT. Weiss recounts his family history in pre-war Europe and the circumstances of his parents' marriage. He describes his childhood in New York City, and he explains his interests in experimenting and tinkering from an early age. Weiss explains the circumstances leading to his undergraduate study at MIT and his original plan to study electrical engineering before focusing on physics. He recounts his long and deep relationship with Jerrold Zacharias, who singularly championed Weiss's interests over the years. He discusses his graduate work on the hyperfine structure of hydrogen fluoride. Weiss describes his formative work with Bob Dicke at Princeton, and he explains how technological advances was beginning to offer new advances in general relativity. He explains how Dicke's influence served as an intellectual underpinning for the creation and success of LIGO. Weiss emphasizes the importance of Richard Isaacson as one of the founding heroes of LIGO, and he describes the fundamental importance of joining his research institutionally with Caltech. He describes his early research with John Mather, and the numerous administrative challenges in working with the NSF throughout the LIGO endeavor. Weiss describes the geographical decisions that went into building LIGO, the various episodes when LIGO's ongoing viability was in doubt, and how both Barry Barish and Kip Thorne contributed to ensuring its success. At the end of the interview, Weiss describes some of the sensitivities regarding who has been recognized in LIGO and who has not, in light of all the attention conferred by the Nobel prize, and he reflects on how LIGO will continue to push discoveries forward on the nature and origins of the universe.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Willy Haeberli, Professor of Physics Emeritus at the University of Wisconsin in Madison, Wisconsin. Haeberli recounts his childhood in Basel, Switzerland, and he describes his experiences as a student during World War II. He discusses his early interest in physics and his decision to pursue nuclear physics at the University of Basel under the direction of Paul Huber. Haeberli describes his graduate research on the ionization of gasses by alpha particles, and he describes the circumstances leading to his subsequent postdoctoral job at the University of Wisconsin, where he was attracted to work with Raymond Herb in accelerator physics. He explains some of the scientific and cultural adjustments in order to settle in at Madison, and he describes the central questions of the structure of atomic nuclei that propelled nuclear physics at that time. He describes his subsequent research at Duke University before returning to Madison to join the faculty, he describes his many research visits to ETH Zurich, the Max Planck Institute, Fermilab, Saclay, and at DESY in Hamburg, and he offers insight on some of the differences in approach between American and European accelerator labs. Haeberli reflects on his contributions to the study of polarized protons and deuterons and angular momentum assignments. He discusses his work developing gas targets of pure spin polarized hydrogen and deuteron atoms, and he describes the critical support of the DOE and the NSF for this research. Haeberli shares his feelings on being elected to the National Academy of Sciences, and he explains his preference teaching undergraduates to graduate students. At the end of the interview, Haeberli describes how the department of physics at Wisconsin has changes over his decades of service, and he explains how only with the benefit of historical hindsight can one distinguish the truly important advances in the field. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Mansour Shayegan, Professor of Electrical Engineering at Princeton. Shayegan recounts his family roots in Isfahan, and the political and social dynamics of growing up in Iran. He explains his decision to pursue an undergraduate education in the United States and the opportunities leading to his enrollment at MIT as an undergraduate. He describes his decision to stay at MIT for graduate school and his experiences in the electrical engineering program, where he worked with his advisor Millie Dresselhaus, during the Iranian Revolution. Shayegan describes Dresselhaus’s reputation as the “Queen of Graphite” and he describes the impact of her research on his dissertation on graphite intercalation. He discusses some of the commercial potential of his graduate research and emphasizes his primary interest in basic research and describes his postdoctoral work at the University of Maryland. He explains the origins of his interest in semiconductor physics in collaboration with Bob Park and Dennis Drew, and he describes the events leading to his faculty appointment at Princeton. Shayegan describes the work involved getting his lab and the MBE system set up, and he discusses the excellent culture of collaboration in both the physics and EE programs at Princeton. He explains recent advances in superconductivity research, and he reflects on the success he has enjoyed as a mentor to graduate students over the years. Shayegan expresses his pleasure in teaching quantum mechanics to undergraduates, and he explains his long-term interest in research on gallium arsenide. At the end of the interview, Shayegan reflects on his contributions to the field, its intellectual origins in the prediction of Bloch ferromagnetism, and the importance of securing the ongoing support from the National Science Foundation.