Princeton University

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Thomas Witten, Homer J. Livingston Professor, Emeritus, in the Department of Physics, James Franck Institute. Witten recounts his childhood in Maryland, Utah, and then Colorado, as his father, a medical doctor moved jobs, and he describes his undergraduate experience at Reed College and where majored in physics and where he benefited from excellent attention from the professors. He discusses his graduate work at UC San Diego, where he was advised by Shang Ma working on two-dimensional charged Bose gas research, and he describes his postdoctoral research at Princeton to work with John Hopfield. Witten conveys the exotic nature of Ken Wilson’s ideas on renormalization during that time, and he explains the origins of soft matter physics as a distinct field and his work at Saclay before joining the faculty at the University of Michigan. He describes his subsequent research on pushing concepts of renormalization into polymers and related work on the Kondo effect. Witten explains his decision to join the research lab at Exxon, and he conveys Exxon’s emulation of Bell Labs as a place where he could pursue basic science within an industrial research lab, and where he could continue his work on polymers. He describes the downsizing of the lab and his decision to join the faculty at the University of Chicago, and his discusses his developing interests in buckyballs and capillary flow. Witten describes his affiliation with the James Franck Institute and its rich history, and he explains his current interests in granular materials, thin sheets, and colloidal rotation. At the end of the interview, Witten emphasizes the technological impact of fast video on soft matter physics and his interest in the physics of crumpling objects.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with interviews Michael Oppenheimer, Professor of Geosciences and International Affairs and the High Meadows Environmental Institute at Princeton University. Oppenheimer describes the three-way nature of his work at Princeton, between the School of Public and International Affairs and the Science, Technology, and Environmental Policy program. He describes the possibilities for climate change policy in the transition from Presidents Trump to Biden, and he discusses the moral dimension to climate change diplomacy and what the “Global North” owes the “Global South.” Oppenheimer recounts his childhood in Queens, the opportunities that allowed him to enroll at MIT at age 16, and his decision to focus on chemistry and to become involved in political activity in the 1960s. He explains his decision to go to the University of Chicago for graduate school, where he studied under the direction of Steve Berry on low-temperature spectroscopy of alkali halides. Oppenheimer describes his postdoctoral research at what would soon become the Center for Astrophysics at Harvard to work on astrophysics from an atomic and molecular perspective and on the chemistry of comets. He explains how the acidification issue in the Adirondack Lakes serves as an entrée to his interests in environmental policy and how this led to his work for the Environmental Defense Fund. Oppenheimer describes his work on the linearity question and why it is relevant for understanding carbon emissions and his advocacy work on the Clean Air Act. He explains the early science that concluded that even a few degrees of warming would be globally catastrophic, and the early signs that the Republican party would serve generally to block legislation to mitigate climate change. Oppenheimer discusses his involvement with international climate negotiations and policy with the IPCC and the issue of contrarianism in global warming debates. He contrasts the simplicity of the greenhouse effect with the complexity of understanding climate change, and he explains his decision to move to Princeton within the context of what he thought the Kyoto Protocol had achieved. Oppenheimer reflects on how climate change has increased in the public consciousness, and at the end of the interview, he considers early missed opportunities for more change in climate policy, and where he sees reason for both optimism and pessimism as the world faces future threats relating to climate change.

Interviewed by
David Zierler
Interview dates
July 28, August 18, September 4 & 11, 2020
Location
Video conference
Abstract

Interview with William H. Press, Leslie Suringer Professor in Computer Science and Integrative Biology at the University of Texas at Austin. Press recounts his childhood in Pasadena and the influence of his father Frank Press, who was a prominent geophysicist, Caltech professor, and who would become science advisor to President Jimmy Carter. He describes the impact of Sputnik on his budding interests in science, and he discusses his undergraduate experience at Harvard, where Dan Kleppner, Norman Ramsey, Ed Purcell and Dick McCray were influential in his development, and where he realized he had an aptitude for applying abstract equations to understanding physical reality. Press describes trying his hand with experimentation in Gerald Holton’s high-pressure physics lab, he recounts his involvement in student activism in the late 1960s, and he discusses his involvement in computer hacking in its earliest form. He explains his decision to attend Caltech for graduate school and his interest in studying with Dick Feynman and Kip Thorne. Press describes the opportunity leading to his work at Lawrence Livermore, how he got involved with Thorne’s group of mathematical general relativists, the origins of Thorne’s work on gravitational waves, and his collaborations with Saul Teukolsky and Paul Schechter. He describes the formative influence of Chandrasekhar. Press discusses his first faculty position at Princeton where he joined John Wheeler’s relativity group, and he describes his research interests flowing more toward astrophysics. He explains the opportunities leading to his tenure at Harvard, where he was given separate appointments in physics and astronomy and where he founded theoretical astrophysics within the Center for Astrophysics. Press describes his entrée into science policy work in Washington with the NSF Physics Advisory Committee and then later on the National Academy of Science and the National Research Council, and he explains the origins of his long-term association with the JASON Study Group. He describes his interest in gravitational collapse, Ia supernovae and galaxy formation, and why the study of black holes reinvigorated the field of general relativity. Press describes the singular genius of Freeman Dyson, and he recounts his contributions to nuclear risk reduction in science policy and his service with the Defense Science Board and the Institute for Defense Analyses. He discusses his tenure as chair in Harvard’s Department of Astronomy, his experience with the Numerical Recipes books, and his collaboration with Adam Riess and Robert Kirshner. Press recounts his decision take a position at Los Alamos as Deputy Director to John Browne, he describes his education there in the concept of leadership which he never received in his academic career, and he provides his perspective on the Wen Ho Lee spy case and the existential crisis this caused at the Lab. He describes the Lab’s role in the early days of computational biology and how this field sparked his interest. Press contextualizes this interest within his conscious decision not to stay connected to astrophysics during his time at Los Alamos, and he explains the opportunity leading to him joining UT-Austin where he remains invested in computational biology. He describes his work for the President’s Council of Advisors in Science and Technology during the Obama administration, he describes Obama’s unique interest in science and science policy, and he narrates the difficulties in the transition to the Trump administration. Press reflects on what it means to be a member of the rarified group of scientists who did not win a Nobel Prize but who were advised by and taught scientists who did. At the end of the interview, Press explains that he has always been a dilettante, which has and will continue to inform how he devotes his time to science, service, and policy matter, and he advises young scientists to aspire to mastery in a specific discipline early in their career before branching out to new pursuits.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Robert M. Wald, Charles H. Swift Distinguished Service Professor of Physics at the University of Chicago, where he also has appointments with the Kadanoff Center and the Kavli Institute for Cosmological Physics. Wald recounts his childhood in New York, he describes the tragedy of losing his parents in an airplane crash when he very young, and he explains the ongoing legacy of his father Abraham Wald who was a prominent professor of statistics at Columbia. He describes his high school education at Stuyvesant and his decision to pursue a physics degree at Columbia, where he became close with Alan Sachs, who supervised him at Nevis Laboratory. Wald explains his decision to focus on general relativity for graduate school and his interest in working with John Wheeler at Princeton. He describes the excitement surrounding recent advances in approaching astrophysics through relativity, the significance of the discovery of pulsars and the field of black hole uniqueness, and he discusses his postdoctoral research with Charles Misner at the University of Maryland. Wald describes the impact of Saul Teukolsky’s discovery of a variable Weyl tensor component that satisfied a decoupled equation, and he explains the circumstances leading to his faculty position at Chicago, where he was motivated to work with Bob Geroch. He reflects on the experience writing Space, Time, and Gravity, the advances in black hole collapse research, and he explains why he felt the field needed another textbook which motivated him to write General Relativity. Wald discusses his work on the Hawking Effect and his long-term interest in quantum field theory, and he explains the influence of Chandrasekhar on his research. He describes his contributions to the LIGO collaboration, and he explains what is significant about the Event Horizon Telescope’s ability to capture an image of a black hole. Wald explains the state of gravitational radiation research and the accelerating universe, he prognosticates on what advances might allow for a unification of gravity and the Standard Model, and he explains why dark energy is apparently a cosmological constant. At the end of the interview, Wald discusses his recent work on the gravitational memory effect and, looking to the future, he explains his interest to continue working to understand the S-matrix in quantum electrodynamics.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Mansour Shayegan, Professor of Electrical Engineering at Princeton. Shayegan recounts his family roots in Isfahan, and the political and social dynamics of growing up in Iran. He explains his decision to pursue an undergraduate education in the United States and the opportunities leading to his enrollment at MIT as an undergraduate. He describes his decision to stay at MIT for graduate school and his experiences in the electrical engineering program, where he worked with his advisor Millie Dresselhaus, during the Iranian Revolution. Shayegan describes Dresselhaus’s reputation as the “Queen of Graphite” and he describes the impact of her research on his dissertation on graphite intercalation. He discusses some of the commercial potential of his graduate research and emphasizes his primary interest in basic research and describes his postdoctoral work at the University of Maryland. He explains the origins of his interest in semiconductor physics in collaboration with Bob Park and Dennis Drew, and he describes the events leading to his faculty appointment at Princeton. Shayegan describes the work involved getting his lab and the MBE system set up, and he discusses the excellent culture of collaboration in both the physics and EE programs at Princeton. He explains recent advances in superconductivity research, and he reflects on the success he has enjoyed as a mentor to graduate students over the years. Shayegan expresses his pleasure in teaching quantum mechanics to undergraduates, and he explains his long-term interest in research on gallium arsenide. At the end of the interview, Shayegan reflects on his contributions to the field, its intellectual origins in the prediction of Bloch ferromagnetism, and the importance of securing the ongoing support from the National Science Foundation.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Nai Phuan Ong, professor of physics at Princeton University. Ong describes how he has managed to keep his lab running during the coronavirus pandemic thanks to remote data analysis. He recounts his childhood in Malaysia in a family of ethnic Chinese who had businesses in Penang, and he describes his Catholic schooling and how he became interested in science as a young boy. Ong describes the opportunities leading to his undergraduate education at Columbia, where he pursued a degree in physics. He explains his decision to enroll at Berkeley for graduate school, where he studied under the direction of Alan Portis and worked on developing a microwave technique to perform measurements of the Hall effect without making Hall contacts to the sample. Ong recounts his offer from the University of Southern California to join the physics department first as a postdoctoral researcher and then as a member of the faculty. He explains his decision to move to Princeton and describes some of the difficulties given what he saw as a low point for condensed matter physics in the physics department at Princeton at that time. Ong describes the significance of the prediction and discovery of superfluid helium-3, and he discusses how Phil Anderson introduced him to high-Tc superconductivity. He discusses his research on representing the weak field Hall effect in a geometric fashion, he explains why the cuprate Hall effect remains mysterious, and he describes his more recent work on quantum spin liquids and the Nernst effect. Ong describes the excitement surrounding research in novel ground states of Dirac electrons in graphene, and what the achievement of topological quantum computers would mean for his research. At the end of the interview, Ong explains why graduate students are among the rarest and most precious resources in science, and why he hopes to concentrate on the Karplus-Luttinger theory in the future.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Scott Tremaine, emeritus professor at the Institute for Advanced Study in Princeton. Tremaine discusses his current affiliation with the University of Toronto, and he provides a historical overview of the boundaries between astronomy and astrophysics. He recounts his childhood in a town north of Toronto, and he explains his early interests in science. Tremaine describes his undergraduate experience at McMaster, the opportunities that led to his graduate admission to Princeton, and the exciting developments that compelled him to focus his thesis research on astrophysics. He describes his dissertation on the dynamics of galaxies done under the direction of Jerry Ostriker, who at the time was focused on the earliest research on dark matter. Tremaine discusses his postdoctoral term at Caltech where he worked with Jim Gunn and Peter Goldreich, and he explains his decision to take a second postdoctoral position at the Institute of Astronomy at Cambridge. He describes his appointment at the Institute for Advanced Study, his decision to join the faculty at MIT, and he explains his ongoing research collaboration with Goldreich on studying Saturn's rings. Tremaine describes the intellectual origins of his book, co-authored with James Binney, Galactic Dynamics, and he explains his decision to join the University of Toronto to become the director of CITA. He describes his interests in the origins of comets, his contributions to black hole research, and his appointment at the Institute for Advanced Study. Tremaine discusses his work on exoplanets, and at the end of the interview, he surveys the importance of increasing computational power over the course of his career, the exciting advances that have been made in understanding galaxy development, and why the "three-legged" stool upon which cosmology rests - namely, on inflation, dark matter, and dark energy, is problematic.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Steven Weinberg, Jack S. Josey-Welch Foundation Chair in Science and Regental Professor at the University of Texas at Austin. The focus of the interview is on how and when Weinberg became interested in cosmology, and how he defines it as a distinct discipline from astronomy and astrophysics. Weinberg explains that between the intensity of interest in particle physics in the 1950s and the speculative nature of cosmology, he had neither the interest nor the outlet to pursue cosmology in a rigorous way. He discusses some of the theoretical and experimental limitations at the time that kept cosmology in a largely “mystical” realm, and why the discovery of the microwave background by Penzias and Wilson “changed everything.” Weinberg explains what new questions can be considered as a result of evidence for a hot early universe, and he discusses when he first became interested in the formation of galaxies. He describes why the cosmological constant has bothered him for a long time, and he traces this problem back to Einstein and what Weinberg considers Einstein’s incorrect approach to his own theory. Contrasting his own experience as a graduate student, he cites John Preskill as his first student to pursue cosmology, and he explains that while his interests in particle physics and cosmology are generally separate, he always looks for intersecting research opportunities, which is well represented in the relevance of beta decay physics in the first three minutes of the universe. At the end of the interview, Weinberg surveys the value and problems associated with the term “Big Bang,” and he reflects on his career-long effort not to be dogmatic in his views on cosmology.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Steven Block, W. Ascherman Professor of Sciences, Stanford University. Block describes his German-Jewish heritage on his mother’s side, and his father’s Eastern European Jewish heritage. He describes growing up the son of a physicist and the importance of skiing and music in his family and spending his early childhood in Italy while his father was a visiting scholar. Block describes the rest of his childhood in North Carolina, and then Illinois, where his father worked for Duke and Northwestern, respectively. He explains his unique interests in Chinese and oceanography and why this led him to the University of Washington in Seattle, and he describes his subsequent pursuit of physics and ultimately biophysics at Oxford University. Block discusses the formative relationship he built with Max Delbruck at Cold Spring Harbor Labs where he worked on phycomyces, and he explains his decision to go to Caltech for graduate school to work with Howard Berg. He describes his postgraduate interests in sensory transduction in e. coli as a postdoctoral researcher at Stanford, and he provides a history on the discovery of kinesin and why this was key for his research. Block explains his decision to join the Rowland Institute and he discusses its unique history and the freedom it allowed its researchers, and he describes the opportunity that allowed him to secure tenure at Princeton. He describes some of the difficulties in convincing his colleagues to consider biophysics as “real” physics and the considerations that led to him joining the faculty at Stanford. Block describes the difficulties he has experienced when his laboratory site was displaced, and how, in dark way, he was prepared for the pandemic lockdown before most of his colleagues. At the end of the interview, Block reflects on his contributions, he explains the central importance of statistical mechanics to biophysics, he explains how he has tried to emulate his mentors in the care and interest he has shown his own students, and he prognosticates on the future of single molecule biophysics.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Juan Maldacena, Carl P. Feinberg Professor at the Institute for Advanced Study. Maldacena recounts his childhood in Buenos Aires, he discusses his undergraduate education at the University of Buenos Aires and his advanced work in physics at Instituto Balseiro where he had his initial exposure to string theory. He explains his decision to pursue a graduate degree at Princeton where he worked with Curt Callan and where he benefited from Ed Witten’s lectures on dualities in quantum field theory and in string theory. Maldacena describes his thesis research on conformal field theories with boundaries and the significance of Joe Polchinski’s discovery of D-branes, and he conveys the importance of his collaboration with Andy Strominger as a postdoctoral researcher at Rutgers. He describes his paper on AdS/CFT while at Harvard and he explains his work on non-gaussianities and his realization that string theory would be useful for cosmology. Maldacena explains his decision to leave the faculty at Harvard to join the Institute, and he describes his subsequent research on space-time and entanglement, the chaos of black holes and the likelihood that they are rapidly thermalizing systems. He explains the contributions of string theory research as offering physics a model for quantum gravity and for the quantum mechanics of spacetime itself, and he shares his perspective on broader debates about how many researchers should or should not be involved in string theory work. At the end of the interview, Maldacena describes his hope in the future to better understand the interiors of black holes.