Rockefeller Foundation

Interviewed by
Charles Weiner
Interview date
Location
Washington, D.C.
Abstract

Three years of preparation which led up to achievement, with Ernest T. S. Walton in 1932, of the first artificial transmutation of elements by accelerated protons, and the joyous reactions of his colleagues at the Cavendish Laboratory. With a three month grant from the Rockefeller Foundation, in 1933 visits with Robert Van de Graaff in Boston, Merle Tuve in Washington, Charles Lauritsen in Pasadena and Ernest O. Lawrence in Berkeley. In 1937, on his second American trip, noticed that the "sealing wax and string" at University of California at Berkeley had been replaced by engineering. Effect of influx of German refugee physicists. Rutherford's attitude toward a cyclotron at Cavendish because of Marcus Oliphant's low voltage ion source. Need for higher voltages and benefaction of a quarter million pounds from Lord Austin. Rutherford's complete control of Laboratory, the changing role of Cavendish over time; impact of the discovery of fission in England; effects of the war on nuclear physics and the differences in postwar planning and funding of research. Also prominently mentioned are: Niels Henrik David Bohr, James Chadwick, Ralph Howard Fowler, Petr Kapitsa; Cavendish Laboratory, European Council of Nuclear Research, Dept. of Physics at University of California Berkeley, and University of Oxford.

Interviewed by
Charles Weiner
Interview date
Location
Varian Physics Building, Stanford University, California
Abstract

Recollections of physics community in 1920s and early 1930s; opportunities for physics work in Europe; awareness of political climate in Germany (1932); relationship with Werner Heisenberg at University of Leipzig; awarded Rockefeller Fellowship to study at University of Rome; contacts with physicists after Leipzig and before Rome; John Von Neumann's list of refugee physicists; offered appointment to position at Stanford University; visit to University of Copenhagen and Niels Bohr's advice to accept appointment; relinquishing of second half of fellowship; influenced by Bohr, Heisenberg and others; Bloch's influence on Enrico Fermi leading to theory of neutrino; met by Gregory Breit on arrival in New York; initial teaching duties at Stanford; theoretical physics in America in 1934; distinctions between Europe and America on theory vs. experiment; seminars with J. Robert Oppenheimer; first interest in experimental work; early research on neutrons; recollections of 1935 Michigan Summer School; started Stanford Summer School in 1936 with George Gamow as first visitor (Fermi 1937, Isidor Isaac Rabi 1938, Victor F. Weisskopf 1939); origin of idea of neutron polarization; 1936 paper proposing neutron magnetic moment experiment; 1937 Galvani Conference in Bologna; use of Berkeley 37-inch cyclotron for magnetic moment experiment; decision to build cyclotron at Stanford; construction supported by Rockefeller Foundation; initial involvement with Manhattan Project; recollections of receiving news of fission; neutron work for Manhattan Project at Stanford; marriage in 1940; work on implosion at Los Alamos Scientific Laboratory; reasons for leaving Los Alamos; work on radar at Harvard University; first ideas on measuring nuclear magnetic resonance (NMR); helpfulness of radar experience in NMR work; William W. Hansen and the klystron; fate of the first Stanford cyclotron; knowledge of Edward M. Purcell's work on NMR; publication of initial results, 1946-1948; Rabi and Polykarp Kusch's work on molecular beams; development of NMR field; Nobel Prize award; association with CERN, 1954; contributions of greatest impact.