Stanford University

Interviewed by
David Zierler
Interview date
Interview dates
September 9, September 25, October 9, October 19, November 3, November 9, November 23, November 30, December 7, and December 14, 2020
Location
Video conference
Abstract

In this interview, Ernest Moniz, Emeritus Professor and Special Adviser to the President of MIT, discusses his time as U.S. Secretary of Energy under Barack Obama. Moniz discusses his time as an undergraduate at Boston College working under Joe Chen and their efforts building a resonant cavity. He speaks about his experience as a graduate student at Stanford University working Dirk Walecka on the study of theoretical condensed matter physics and how it led to his eventual publishing of a paper about using a modified fermi gas to understand deep inelastic scattering. Moniz describes his time working in Washington with the Office of Science and Technology Policy and how the OSTP became marginalized under the George W. Bush and Trump Administrations. He discusses the Wen Ho Lee scandal and subsequent development of the National Nuclear Security Administration and how it has evolved throughout the years. Moniz talks about his partnership with John Deutch at MIT on a policy-oriented study of the future of nuclear power which eventually became known as the series, The Future of... He details his time working in the President’s Council of Advisors on Science and Technology during the Obama Administration and his eventual role as the Secretary of Energy. Moniz Discusses the development of the Iran Nuclear Deal and the cooperation of the countries involved, as well as how the U. S’s relationship with Iran has changed over the years. He reflects on how the Trump Administration undid several Obama era initiatives pertaining to energy and climate and the lasting impacts of those actions. He also discusses becoming an advisor to Saudi Arabia and the planned mega-city of the Tabuk region. Lastly, Moniz reflects upon the challenges the Biden Administration may face moving towards a more decarbonized energy future.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Blas Cabrera, Stanley Wojcicki Chair Professor of Physics at Stanford. Cabrera recounts his family’s Spanish heritage, he discusses being a third-generation physicist, and he explains the circumstances of his family’s arrival to the United States when he was five. He describes his childhood in Charlottesville, where his father taught at the University of Virginia’s Department of Physics. Cabrera describes his own undergraduate experience at UVA and the opportunities that led to his graduate admission at Stanford to work with Bill Fairbank. He discusses his research on relativistic corrections to the Cooper mass pairs and on developing low magnetic fields. Cabrera conveys the influence of Shelly Glashow’s ideas about the possibility that dark matter is magnetically charged particles, and he describes his postdoctoral work on the GP-B project. Cabrera describes the Valentine’s Day event in 1982 where there was initial excitement that he had detected a magnetic monopole, and he explains his subsequent focus on WIMPs and the broader search for dark matter. He describes his work on the international CDMS collaboration, he explains the transition from CDMS I to CDMS II, and he reviews how the project understands its goals in light of the ongoing mystery of dark matter. Cabrera discusses his tenure as department chair at Stanford and as director of the Hansen Experimental Physics Laboratory. At the end of interview, Cabrera reflects on accepting that he did not detect a magnetic monopole, and he surveys the accomplishments and future prospects of CDMS.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Surjeet Rajendran, Associate Professor of Physics at Johns Hopkins University. He provides an overview of his current research activities with David Kaplan in black hole physics, new short distance forces, and modifications of quantum mechanics, and he shares his reaction on the recent g-2 muon anomaly at Fermilab. Rajendran explains why he identifies as a “speculator” in physics, he recounts his childhood in Chennai, India, and he discusses his grandparents’ communist activism, his Jesuit schooling, and how science offered a refuge for rebellion from these influences. He explains his decision to transfer from the Indian Institute of Technology to Caltech as an undergraduate, where he worked with Alan Weinstein on LIGO. Rajendran discusses his graduate research at Stanford, where KIPAC had just started, and where Savas Dimopoulos supervised his work on PPN parameters and solving the seismic noise problem on atom interferometers for LIGO. He describes his postdoctoral work, first at MIT and then at Johns Hopkins, when he began to collaborate with Kaplan on axion detection and the electroweak hierarchy problem. Rajendran explains the rise and fall of the BICEP project, and his Simons Foundation supported work on CASPEr. He discusses his interest in bouncing cosmology and firewalls in general relativity, and he conveys optimism that LIGO will advance our understanding of black hole information. At the end of the interview, Rajendran reviews his current interests in the Mössbauer effect, and explains how nice it was to win the New Horizons in Physics prize, and he prognosticates on how the interplay between observational and theoretical cosmology will continue to evolve and perhaps resolve fundamental and outstanding questions in the field.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Malcolm Roy Beasley, Sidney and Theodore Rosenberg Professor of Applied Physics, Emeritus, at Stanford. Beasley recounts his passion for basketball in high school and the opportunities that led to his undergraduate study at Cornell, where he describes his focus on engineering physics as just the right blend of fundamental and applied research. He describes his relationship with Watt Webb, who would become his graduate advisor, and the origins of BCS theory. Beasley discusses his work taking magnetization measurements on type-II superconductors and his thesis research on flux creep and resistance. He discusses his postdoctoral appointment working with Mike Tinkham at Harvard and the developments leading to reduced dimensional superconductivity. Beasley explains the technological implications in the fluctuations of the order parameter, and he describes the speed with which Harvard made him a faculty offer. He discusses the circumstances that led to him joining the faculty at Stanford, his immediate connection with Ted Geballe, and his work on A15 superconductors. Beasley explains the significance of the 1976 Applied Superconductivity Conference and the important work in the field coming out of the Soviet Union at the time. He conveys the excitement regarding amorphous silicon and how the KT transition in superconductors became feasible. Beasley describes his interest in thermal fluctuation limits and coupled oscillators, and he describes Aharon Kapitulnik’s arrival at Stanford and the origins of the “KGB” group. He describes the group’s work on alloyed-based model systems and his idea to study high-resistance SNS Josephson junctions. Beasley explains “Pasteur’s quadrant” and why the KGB group was so well-attuned to dealing with it, and he discusses the impact of computational theory on the field and specifically that of Josephson junctions on digital electronics. He surmises what quantum superconductivity might look like, and he describes his work as dean and as founding director of GLAM, and some of the inherent challenges in the “trifurcation” at Stanford between the Departments of Physics and Applied Physics and SLAC. Beasley discusses his leadership at APS and the issue of corporate reform, and he explains his role in the Schön commission and what it taught him about scientific integrity. At the end of the interview, Beasley reflects on some of the “forgotten heroes” in the long history of superconductivity, he attempts to articulate his love for physics, and he explains why the achievements of the KGB group represent more than the sum of its parts.

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Interview dates
May 18 & June 22, 2021
Location
Video conference
Abstract

Interview with Steven Chu, former United States Secretary of Energy and current Professor of Physics and Professor of Molecular and Cellular Physiology in the Medical School at Stanford University. Chu begins by taking us through his changing research interests across his time at Berkeley, Bell Labs and Stanford, and then recounts the beginnings of his interest in climate change in the early 2000s. He talks about his work advising companies who are working on climate change solutions such as carbon capture, and he gives an overview of the research and action being taken around renewable energy sources. Chu then goes back in time and recounts the story of his family, starting with his grandfather in China who emphasized education for all his children. Growing up in Nassau County, Chu describes feeling like a “disappointment” in his family because he didn’t go to an Ivy League school and instead completed his undergraduate studies in math and physics at the University of Rochester. Chu discusses his decision to attend Berkeley for grad school and meeting his advisor Eugene Commins, who was working on weak interactions. Then Chu recounts his transition to Bell Labs and describes the laser work going on there at the time, as well as his burgeoning interest in beta decay experiments. He talks about his research surrounding laser cooling and explains his decision to move to Stanford after Bell. Chu remembers his experience winning the Nobel Prize and accepting the position as director of Lawrence Berkeley National Lab. Chu ends the interview with stories from his time as Secretary of Energy under the Obama administration, such as his experiences with the Deepwater Horizon oil spill, setting up the DOE Loan Program Office, and his international work on climate change.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Savas Dimopoulos, Professor of Physics at Stanford University. The interview begins with Dimopoulos reflecting on how the pandemic has affected his research, and he gives his initial impressions on the g-2 muon anomaly experiment at Fermilab. He discusses the push and pull between theory and experimentation when searching for physics beyond the Standard Model. Dimopoulos then recounts his early childhood in Turkey, where his family was part of the Greek minority. Due to ethnic tensions, he fled with his family to Athens as refugees. Dimopoulos remembers his early exposure to math and physics and being torn between the two. He describes moving to the US at age 18 for his undergraduate studies at University of Houston. Dimopoulos then recounts his inclination toward theory and his acceptance at University of Chicago to pursue his graduate studies under Yoichiro Nambu. He discusses his post-doctoral appointment at Columbia which then led to an offer from Stanford. He explains his research in baryogenesis and technicolor, as well as his brief time at Harvard with Howard Georgi. Dimopoulos talks about his return to Stanford, his work at CERN, and his research on large extra dimensions with Dvali and Arkani-Hamed. He concludes the interview with predictions for the future of physics beyond the Standard Model.

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Yifang Wang, Director of the Institute of High Energy Physics, Chinese Academy of Sciences. He describes the role of the Institute within the Chinese Academy, and he recounts his childhood in Nanjing, Jiangsu Province, in China. Wang discusses his undergraduate work in nuclear physics at Nanjing University and he discusses the opportunities to being chosen by Sam Ting to go to CERN. He discusses his graduate work at the University of Florence, where Ting had the L3 experiment, and he described his work going back and forth from CERN for six years, and his involvement in the Higgs search and excited leptons. Wang discusses his postgraduate work in tau polarization and some of the theoretical bases for testing the Standard Model. He describes his work on the AMS collaboration and the search for antimatter, and he describes his postdoctoral work in neutrino oscillations at Stanford. Wang discusses the opportunities leading to his offer from the Institute of High Energy Physics in Beijing and the prospect of shooting a neutrino beam. He discusses the unique ways that the Chinese government supports physics, and the importance of the Beijing Electron-Positron Collider and the search for glueballs. Wang describes his increasing responsibilities at the Institute leading to his directorship, and he discusses his current work on the Large Circular Collider and the future prospects of high energy physics in China. He describes his tenure as director of Juno and the origins of the Daya Bay experiment. At the end of the interview, Wang asserts that the future of elementary particle physics is through the Higgs for which new understandings of space and time will be achieved, and he emphasizes the importance of scientific collaboration and the benefits of competition as a key component in the future of American-Chinese relations.