United States. National Aeronautics and Space Administration

Interviewed by
David Zierler
Interview date
Location
Teleconference
Abstract

In this interview, Saul Perlmutter, Professor of Physics at UC Berkeley and Staff Scientist and senior faculty member at Lawrence Berkeley National Laboratory, discusses his life and career. Perlmutter shares that his research has not been slowed down by the pandemic by happy coincidence that he is currently focused on remote data analysis, and he recounts his childhood in Philadelphia where he was educated in Quaker schools. He discusses his early fascination with quantum mechanics and his decision to go to Harvard for his undergraduate education, where he cemented his interests in experimental physics. Perlmutter explains his decision to go to Berkeley for graduate school, where he worked in Buford Price’s group before Richard Muller became his graduate advisor. He discusses his early awareness of the cosmic microwave background and how he became involved with robotic searches for supernovae. Perlmutter describes the importance of NASA’s BITNET program as a way to connect observatory data worldwide to the computer systems at Berkeley, and he explains the intellectual and observational connections between the inflation, expansion, and acceleration of the universe. He discusses his postdoctoral research at Berkeley, and the circumstances leading to him becoming leader of the supernova group and how the DOE became more involved in astrophysics funding. Perlmutter explains the group’s focus on deceleration and he conveys the difficulties in scheduling telescope time to demonstrate spectroscopy proof of type Ia supernovae. He describes the origins of the SNAP satellite project, some of the early theoretical discussions on the nature of dark energy, and when, finally, his group secured long-term support from the Lab. Perlmutter narrates his first interactions with Brian Schmidt and Adam Riess and he describes the batch technique that could predict the discovery of supernovae, which vastly improved the efficiency of scheduling time on large telescopes. He explains the role of dark matter in speeding up the universe’s expansion, and he narrates the celebration with his team when he won the Nobel Prize and how he has chosen the use the political platform that comes with this recognition. Perlmutter discusses his interest in studying climate change, and at the end of the interview, he conveys his excitement about future observational discovery in astrophysics and cosmology.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Peter L. Bender, Senior Research Associate at the University of Colorado and the Joint Institute for Laboratory Astrophysics (JILA) in Boulder. Bender recounts his childhood in New Jersey, he describes his undergraduate focus in math and physics at Rutgers, and he explains his decision to pursue a graduate degree in physics at Princeton to work with Bob Dicke. He discusses his dissertation research on optical pumping of sodium vapor, which was suggested by Dicke as a means of doing precision measurements of atoms. Bender discusses his postdoctoral research at the National Bureau of Standards, where he focused on magnetic fields and he narrates the administrative and national security decisions leading to the creation of JILA in Boulder, where the laboratory would be less vulnerable to nuclear attack. He describes his work on laser distance measurements to the moon and his collaborations with NASA, and he discusses his long-term advisory work for the National Academy of Sciences and the National Research Council. Bender describes the origins of the NASA Astrotech 21 Program and the LISA proposal, he explains his more recent interests in massive black holes, geophysics and earth science, and he explains some of the challenges associated with putting optical clocks in space. At the end of the interview, Bender reflects on the central role of lasers in his research, and he explains the intellectual overlap of his work in astrophysics and earth physics, which literally binds research that is based both in this world and beyond it.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Roald Sagdeev, professor of physics emeritus at the University of Maryland. He recounts his family’s ethnic Tatar heritage, his childhood in Kazan, and his family’s experience during World War II. Sagdeev describes his physics education at Moscow State University, and how he felt regarding the larger issues of physics and Soviet national security – especially during his time in Sarov, which was the equivalent of Los Alamos National Lab for nuclear weapons research. He discusses his work on radiation transport in stellar atmospheres, his subsequent research at the Kurchatov Institute, and his graduate research in controlled nucleosynthesis under the direction of Lev Landau. Sagdeev describes this time as the origins of his expertise in plasma physics and he explains the work he was doing at a classified site in Siberia. He explains how major Cold War events including the Cuban Missile Crisis and nuclear diplomacy affected his career and his moral satisfaction in not contributing to weapons science. Sagdeev discusses his work at the Institute of Physics of High Temperatures, and his developing interests in astrophysics, and he explains his subsequent tenure at the Space Research Institute of the Academy of Sciences, and why the American moon landing demonstrated that Russia had ceded its dominance in the Space Race. He explains why manned space missions were always more politicized than unmanned missions and describes the political value of the Soviet-US Soyuz-Apollo test project as an opportunity for “hand shaking in space.” Sagdeev discusses his experiences advising Gorbachev on disarmament negotiations, and he shares his perspective on SDI and why it was actually the Pershing missile system that contributed more to the Soviet collapse than U.S. defense spending under Reagan. He describes witnessing the end of the Cold War as watching a movie in slow motion, and he explains how he met Susan Eisenhower and the circumstances leading to his move to the United States, where he joined the faculty at the University of Maryland and served as an adviser to NASA. Sagdeev explains his current interests in intergalactic shock waves and he shares his ideas on the newly formed U.S. Space Force and the weaponizing of space. At the end of the interview, Sagdeev shares that if he could start his career all over again, he would focus on neuroscience.

Interviewed by
David Zierler
Interview date
Location
Teleconference
Abstract

In this interview, Steven Squyres discusses: taking Chief Scientist position at Blue Origin; current interests in planetary science including the shift toward sample return missions; changes to human and robotic spaceflight; private enterprise’s emerging role; family background; decision to attend Cornell undergrad in geology; how a course on the results of the Viking mission influenced his decision to pursue robotic exploration of the solar system; involvement in underwater exploration; PhD at Cornell under Carl Sagan and Joe Veverka for the Voyager project; details of the Voyager mission; dissertation work on the geology and geophysics of Ganymede and Callisto with Gene Shoemaker; postdoc and later job with Pat Cassen and Ray Reynolds at NASA Ames; working on Mars with Michael Carr; reaction to the Challenger tragedy; decision to take position at Cornell and to study the Martian surface; 10 years of proposals to NASA, including one that led to Spirit and Opportunity; Martian habitablity; question of how life arises from non-living material; details of his approach to the Martian geological exploration project; discussion of Spirit and Opportunity’s “honorable” demises; experience as rover’s Primary Investigator (PI) and his internal management strategies; communicating information to the press; reflections on the nature of science; conclusions from Spirit and Opportunity missions; involvement with the Magellan mission; work on the Cassini imaging system; chairing NASA’s planetary decadal survey 2013-2023, recommending Europa Clipper and Perseverance; chairing the NASA Advisory Council; writing Roving Mars; stories of innovative problem-solving from the rover missions; meteorite science; reflections on his time as faculty at Cornell; transition to Blue Origin; and his long-term view of potential space occupation and habitation. Toward the end of the interview, Squyres reflects on the question of whether other lifeforms exist and on the importance of experimentation to answer that question.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Elliott Bloom, Professor Emeritus of Particle Physics and Astrophysics at SLAC, recounts his childhood in Brooklyn and then in Los Angeles, and he describes his early interests in physics. He discusses his undergraduate experience at Pomona College where he became interested in particle physics and cyclotrons. Bloom describes his graduate work at Caltech, where he worked under the direction of R.L. Walker and did his thesis experiment on studying gamma ray production of charged pions from hydrogen or deuterium. He discusses his postdoctoral research at SLAC to work with Richard Taylor, who was building spectrometers in End Station A at the end of the linear electron accelerator. Bloom discusses his early interests in online computing and he describes the origins of the Parton model and his collaboration with Joe Ballam on BC-42. He explains his original involvement with axion research and the significance of the DORIS-II storage ring at DESY. Bloom discusses his subsequent work at the SLAC B-factory on PEP-II, he describes his interests in the COBE satellite, and he explains SLAC's entrée into astrophysics. He discusses the collaborative effort with NASA on the GLAST experiment and his focus with DOE support to understand dark matter. At the end of the interview, Bloom reflects on his career trajectory as part of a larger narrative of particle physicists who became engaged in astrophysics later in their careers, and why it is important for physicists to remain open to new avenues of inquiry.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Jonathan Dorfan, emeritus director of SLAC, and emeritus president of the Okinawa Institute of Science and Technology, Graduate University. Dorfan recounts his childhood in South Africa and his experiences with apartheid, and he explains how he developed his early interests in science. He discusses his time at the University of Cape Town and a formative visit he made to SLAC where his older brother was working. Dorfan describes his subsequent studies at UC-Irvine and he explains his interest in pursuing a graduate degree in particle physics and high-energy physics during the excitement surrounding the Standard Model. He discusses his move to SLAC to conduct research with rapid cycling bubble chambers which turned into his thesis. Dorfan describes his postdoctoral research at SLAC with Martin Perl and his involvement with the Mark I and Mark II experiments, and he describes the opportunities leading to his faculty position at SLAC. He discusses the centrality of the B-factory project, and he describes his considerations when he was offered the directorship at Fermilab. Dorfan describes the impact of the rise and fall of the SSC on SLAC, and he explains the leadership positions which at a certain point put him on track to assume the directorship of SLAC. He describes SLAC’s entrée to astrophysics and the strategic partnership it developed with NASA, and he reflects on whether this transition would have been conceivable to Panofsky’s founding vision for the lab. Dorfan describes the changing culture of SLAC and its increasingly bureaucratized nature toward the end of his directorship, his work in support of advancing cancer research at Stanford, and he discusses the circumstances leading to his directorship of the Okinawa Institute. At the end of the interview, Dorfan emphasizes continuity over change as the dominant theme of his career in science with an arc that has increasingly bent toward concerns of broad societal relevance.

Interviewed by
David Zierler
Interview dates
July 17 & 19, 2020
Location
Video conference
Abstract

Interview with Sean O’Keefe, Professor at the Syracuse University Maxwell School of Citizenship and Public Affairs. O’Keefe describes moving around as a child when his father worked for the Navy. He discusses his undergraduate work at Loyola in New Orleans, and he explains his interest in pursuing a career in public service in the post-Watergate, post-Vietnam era when there was much cynicism about working for the government. O’Keefe describes his participation in the Presidential Management Intern Program and his work for the Department of the Navy and after that, for the Appropriations Committee on Capitol Hill, where he worked on budgetary policy against the backdrop of the Cold War in the 1980s. He describes his work at Comptroller for the Department of Defense where he worked on identifying budgetary waste at the Pentagon. O’Keefe describes the scene at the Pentagon during the Gulf War, and he discusses the opportunity that led to him becoming Secretary of the Navy. He describes his career prospects outside of government after George H.W. Bush lost re-election and the opportunity leading to his professorship at Syracuse University, where he mentored students in public service leadership. O’Keefe describes being named NASA administrator in the administration of George W. Bush and some of the challenges he encountered coming from a defense background. He discusses the tragedy and his strategy in dealing with the Space Shuttle Columbia disaster, both in terms of lessons learned from the engineering failures, and the grief that he shared with the families of the astronauts who died. O’Keefe describes some of the ways he attempted to turn the disaster into institutional opportunity at NASA and its impact on the Hubble space servicing mission. He describes his decision to become Chancellor at Louisiana State University, where he focused on building up the school’s endowment, dealing with Hurricane Katrina, and working to keep LSU graduates in the state. O’Keefe describes his tenure as CEO of Airbus North America before returning to Syracuse to teach in his current position. At the end of the interview, O’Keefe reflects on what he has learned about organizational leadership over the course of his career, and what he tries to convey to his students as they prepare to become the nation’s next generation of leaders.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Feryal Ozel, professor of astronomy and physics at the University of Arizona. Ozel recounts her childhood and family background in Istanbul and how her interest in science was fostered both at home and at the all-girls international school she attended through 12th grade. She describes the opportunities that led to her enrollment at Columbia University for her undergraduate education, where she majored in physics and applied math and where Jacob Shaham influenced her interest in neutron stars. She describes a formative summer internship at CERN where she worked on supersymmetric decays of the Higgs boson, and a postgraduate year at the Niels Bohr Institute, before she began her graduate work at Harvard. Ozel discusses her thesis research on magnetars under the direction of Ramesh Narayan and she describes her postdoctoral position at the Institute for Advanced Study as a Hubble fellow. She describes the academic and family considerations that made Arizona an attractive option and she explains the mechanics behind funding from NASA and the NSF. Ozel describes her favorite physics classes to teach, how she sees her role as a mentor to women students and students of under-represented groups, and she surveys recent developments in neutron star astrophysics and the interaction of gas and black holes. She discusses her contributions to the Event Horizon collaboration, and she relates her ideas on the significance of seeing a photograph of a black hole without needing observational evidence to know that black holes exist. Ozel describes her motivations in serving in scientific advisory roles and the importance of science communication and how advances in computational power have revolutionized astrophysics. At the end of the interview, Ozel discusses the outstanding question mark about making gravity compatible with how we understand the subatomic world and how this serves as a starting point for future research oriented toward fundamental discovery, and why she is particularly interested in continuing to work on black hole imaging.

Interviewed by
David Zierler
Interview dates
July 27 and August 18, 2020
Location
Video conference
Abstract

Interview with Anne Kinney, Deputy Center Director of the NASA Goddard Space Flight Center. Kinney recounts her childhood in Wisconsin and her early interests in science. She describes her undergraduate experience at the University of Wisconsin where she pursued degrees in physics and astronomy. Kinney discusses her time in Denmark at the Niels Bohr Institute before completing her graduate work at NYU relating to the International Ultraviolet Explorer. She explains the opportunities leading to her postdoctoral appointment at the Space Telescope Science Institute in Baltimore where she focused on obtaining optical data and near-infrared data to understand spectral energy distribution for quasars and blazars. Kinney discusses her work on the aberrated Hubble Telescope and her new job at NASA Headquarters where she became head of Origins before she was transferred to Goddard where she became division direct of the Planetary Division. She describes Goddard’s efforts to promote diversity and she describes her subsequent position as chief scientist at Keck Observatory before returning to Washington to join the National Science Foundation to be head of the Directorate for Mathematical and Physical Sciences. Kinney provides a broad view of the NSF budgetary environment, and she explains the circumstances that led her back to NASA to her current work. She describes where Goddard fits into NASA’s overall mission and she explains her interest in promoting NASA in an educational framework to children. At the end of the interview, Kinney conveys her excitement about the James Webb Telescope and why she is committed to ensuring that NASA is a driver behind the broader effort to make astronomy and physics more diverse.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Demetrius Venable, Professor Emeritus at Howard University. Venable discusses the administrative distinctions between physics and astronomy at Howard, and he surveys some of the most interest projects currently in train at NASA. He recounts his upbringing in segregated small-town Virginia, the educational limitations this imposed, and his service in ROTC at Virginia State University. He discusses a formative intensive summer program at Columbia, and he describes the opportunities that led to his graduate admission at American University to work with Richard Kay on the effectiveness of circular polarization versus linear polarization in excited states in solid material. Venable describes his postdoctoral research at IBM, then taking a faculty position at St. Paul’s College, before taking a longer-term position at Hampton Institute. He discusses his early involvement with NASA’s remote sensing program, he describes his tenure as director of the dual degree engineering program and the collaborative opportunities he was able to pursue with Jefferson Lab. Venable recounts his increasing administrative responsibilities leading to becoming Provost at Hampton, and he discusses the growth of the NASA-supported Center for Optical Physics. He explains his decision to move to Howard, where he could be more fully involved in research for CSTEA and the LiDAR system, and his partnership with NOAA on climate modeling. Venable conveys his enjoyment at receiving NASA’s Distinguished Public Service Medal, and he provides historical perspective on current and past calls to make STEM more diverse and inclusive. At the end of the interview, Venable explains his deep interest in physics education, and he expresses optimism in the long-term strength of Howard’s physics program.