University of California, Los Angeles

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Steven Kivelson, Prabhu Goel Family Professor of Physics at Stanford University. Kivelson recounts his childhood in Los Angeles as the son of academic scientists, and he describes his transition from career ambitions in the law toward physics. He discusses his undergraduate experience at Harvard, and he describes his lack of appreciation of the stature of many of the physics professors, such as his advisor Paul Martin, whom he knew first as a friend of his parents. Kivelson explains his decision to continue at Harvard for his graduate degree, and he discusses how he developed his interest in amorphous semiconductors under the guidance of Dan Gellat. He recounts his postdoctoral work at UC Santa Barbara, where he worked with Bob Schrieffer on the physics of conducting polymers. Kivelson discusses his first faculty position at Stony Brook, and he discusses the excellent group of graduate students he advised during his tenure there. He discusses some of the broader research questions in condensed matter of the time, including the significance of macroscopic quantum tunneling, invented by Tony Leggett. Kivelson explains his reasons for moving to UCLA, and he discusses Ray Orbach’s efforts to make recruitment a priority there. He discusses his long interest in fractionalization with regard to conducting polymers to be generalized to spin liquids, and his move to Stanford, which attracted him in part because of the condensed matter experimental group. At the end of the interview, Kivelson discusses his current research interests in exploring well-controlled solutions of paradigmatic models of strongly correlated electron systems, and he explains why the concept of a grand unified theory of physics is not a scientific but rather a religious proposition.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Robert Jennings, retired since 2018 from the FDA’s Center for Devices and Radiological Health, where he was a research physicist. He recounts his childhood in Southern California and the formative influence of Sputnik on his physics education. Jennings discusses his undergraduate experience at Occidental and his master’s work at UCLA, and he describes his postgraduate work at the NASA Ames Research Center where he worked on optical detectors. He explains his decision to pursue a PhD at Dartmouth where he studied under John Merrill and worked on Tonks-Dattner resonances. Jennings describes the circumstances leading to his postdoctoral research in Brazil at the Institute of Atomic Energy, where he worked on medical radiation in the Division of Solid-State Physics. He discusses his subsequent research with John Cameron at the University of Wisconsin’s Medical Physics section to develop spectroscopy systems. Jennings explains that the expertise he developed in radiation and modeling in Wisconsin served as his entrée to the FDA ,which excited him as the place where the most impactful research was happening at the time. He surveys the major projects he was involved with over his career, including human visual signal detection, quality assessment of medical devices, improving mammography diagnostics, tomosynthesis, and CT scanners. At the end of the interview, Jennings surveys the fundamental developments that have advanced over the course of his forty-plus year career at FDA, his major contributions in tissue simulation science, and why he believes AI will become increasingly central to advances in medical imaging. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Eli Yablonovitch, Professor of Electrical Engineering and Computer Sciences at UC Berkeley. He talks about the overlap of these fields with applied physics, and he recounts his family’s Jewish heritage in Europe and his origin as a Displaced Person born to refugee parents after World War II. Yablonovitch describes his childhood in Montreal, his early interests in science, and his undergraduate experience at McGill where he first became interested in transistors. He explains his decision to attend Harvard in Applied Physics for graduate school to and the intellectual influence of Mike Tinkham. Yablonovitch discusses his thesis research on semiconductor optics and four-wave mixing, and he describes the opportunities that led to his postdoctoral work at Bell Labs to work on laser-based communications systems. He discusses his return to Harvard as a faculty member and his subsequent solar research work at Exxon. Yablonovitch discusses his formative collaboration with Sajeev John and his move to UCLA, and he explains how the rise of the internet fostered his entrepreneurial instincts. He describes his work to improve cellphone antennae and his decision to transfer to Berkeley and the origins of Alta Devices. Yablonovitch describe his current interests in circuits and chips and he shares his view on China’s work in basic science. At the end of the interview, Yablonovitch reflects on outliving many tech companies, some of the intractable challenges of solar energy, and why Feynman’s lectures remain a guiding light for his own interests.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, Paul Chaikin, Silver Professor of Physics at NYU, recounts his childhood in Brooklyn and he describes his early interests in math and science and his education Stuyvesant High School. He discusses his undergraduate education at Caltech, he conveys how special it was to learn from Feynman and Pauling, and he explains the fields that would go on to form his area of specialty, soft matter physics. Chaikin explains his reasoning to pursue a graduate degree with Bob Schrieffer at Penn, where he did his thesis research on the Kondo effect in superconductors. He describes his first postgraduate work at UCLA where he developed an expertise in thermoelectric power, and he describes the intellectual and technological developments that paved the way for the creation of soft matter physics as a distinct field. Chaikin explains what it would take to solve the many-body problem of nonequilibrium phenomena, and he describes the delicate nature of collaborating with biologists while ensuring they don’t overtake the field. He discusses his joint appointment with Penn physics and the research laboratory at Exxon, and he explains his move to Princeton, which was just starting to develop a program in soft matter physics. Chaikin describes the famous experiment that discovered that M&M shapes (ellispoids) provided the most efficient and minimal negative space in packing applications, and he explains his decision to join the faculty at NYU. At the end of the interview, Chaikin reflects on some of the remaining mysteries in the field, and he describes his interest in pursing research on self-assembly among soft condensed matters.  

 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Philip Pincus is a Distinguished Professor of Materials, Physics, and Biomolecular Science at UC Santa Barbara. In this interview, he explains the origin of his nickname “Fyl,” he recounts his childhood in San Francisco, as well as his decision to study physics at Berkeley and his mentorship by Charlie Kittel. Pincus describes his thesis research on temperature dependence of anisotropy energy, and nuclear spin relaxation in magnetic materials. He describes his postdoctoral work at Saclay and his faculty appointment at UCLA, and he describes working with de Gennes and Alan Heeger. Pincus describes his contributions to dirty type II superconductors and the excitement surrounding early research on liquid crystals. He explains his decision to join the research lab at Exxon Mobil and he describes the basic science research culture there and his increasing focus on soft matter physics, which he continued to pursue at UC Santa Barbara in the Chemical Engineering Department. Pincus discusses his current interests in water and cohesive energy, and at the end of the interview, he reflects on the growth of soft matter physics out of his original interest in solid state physics, and he explains why condensed matter theorists might have something to offer dark matter research.

Interviewed by
Ryan Hearty
Interview date
Location
La Jolla, California, U.S.A.
Abstract

Dr. Charles Kennel, director emeritus of Scripps Institution of Oceanography and (currently) Visiting Research Fellow at the Centre for Science and Policy, University of Cambridge, is interviewed at his home in La Jolla, California, by Ryan Hearty, oral history fellow at the American Institute of Physics. Kennel describes several milestones in his diverse career spanning industry, academia and government service. Subjects include: Kennel’s childhood in Boston; undergraduate studies at Harvard University; doctoral research at Princeton University, including work experience at Avco-Everett Research Laboratory; postdoc work at the Abdus Salam International Centre for Theoretical Physics (ICTP) in Trieste, Italy; his academic career as professor and later chair of physics, as well as vice chancellor, at UCLA; his service as associate administrator at NASA; directing Scripps; and recent work in climate change policy.

Interviewed by
Joanna Behrman
Interview date
Location
Los Angeles, California
Abstract

In this interview, Joanna Behrman, Assistant Public Historian for AIP, interviews Margaret Kivelson, Distinguished Professor Emerita of Space Physics at the University of California, Los Angeles. Kivelson recounts her childhood in New York City and her decision to attend Radcliffe College. She describes her experiences attending graduate school at Harvard University and working with Julian Schwinger. Kivelson explains her decision to move out to California, to work at the RAND Corporation, and her efforts to secure a position at UCLA. Kivelson describes how UCLA became a hub for space physics research and her work on the magnetometers for various projects including OGO-5, Pioneer 11, and Galileo. Kivelson also discusses her work to improve the status of women in academia on the Harvard Board of Overseers and at UCLA.

Interviewed by
David Zierler
Interview date
Location
video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Robert Finkelstein, (deceased in August 2020) formerly professor emeritus, department of physics, University of California, Los Angeles (UCLA). Finkelstein describes his early interests in physics and his undergraduate education at Dartmouth College, and he describes his formative summer at Columbia University, where he studied under I.I. Rabi. He discusses he graduate work at Harvard University under the direction of John van Vleck, and he discusses van Vleck’s fundamental contributions to quantum mechanics. Finkelstein describes his postdoctoral work expanding on Niels Bohr’s capacity to deal with magnetism, and he discusses his work with Francis Bitter at Massachusetts Institute of Technology (MIT). He describes his conscription to the Navy during World War II, where he worked on mine warfare, and he explains his close relationship with George Gamow and his work on tunneling in quantum mechanics and general relativity. Finkelstein discusses his postwar work at Fermilab, where he became interested in meson physics, and he describes his position at the Institute for Advanced Study at Princeton as a postdoctoral researcher under Robert Oppenheimer, where he continued to work on mesons. He describes getting to know at the Institute, he discusses his first contact with the Feynman diagrams, and he recounts how Jack Steinberger used his calculations which were in agreement with the diagrams. Finkelstein discusses his decision to join the faculty at UCLA, and he explains his opinion that Julian Schwinger was a “deeper” thinker than Feynman. He explains the originals of his unitary field theory, and he describes his contributions to the concept of supergravity. At the end of the interview, Finkelstein explains his ongoing interest with improving upon the Standard Model, and he reflects on the incredible level of understanding about the cosmos that has been developed over the course of his career. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Raymond Orbach, professor of physics emeritus at the University of Texas at Austin. Orbach recounts his childhood in Los Angeles, his early interests in chemistry, and his undergraduate experience at Caltech. He discusses his graduate work at Berkeley on integral equations and his research at Bell Labs and at Oxford where he worked on resonance relaxation. Orbach explains his research agenda at UCLA, including his work on magnetic resonance and the antiferromagnetic ground state. He discusses his work as chancellor of UC Riverside and his ability to keep up research while working in administration. Orbach recounts the circumstances leading to him becoming director of science at DOE and his “dual-hatted” work as Undersecretary of Science for DOE. He provides an overview of the state of high energy physics in the early 2000s and the long-term affect of the SSC cancellation. In the final part of the interview, Orbach talks about his research on energy issues at superconducting quantum interference devices at UT. 

Interviewed by
Nils Randlev Hundebøl
Interview date
Location
Belmont, California
Abstract

In this interview, Chuck Hakkarinen discusses topics such as: his career with Electric Power Research Institute (EPRI), climate modeling, Model Evaluation Consortium for Climate Assessment (MECCA) project; his education in meteorology and air polution; Willard Libby; University of California, Los Angeles (UCLA); Chauncey Starr; Sam Schurr; Peter Hobbs; his father's work on the Naval Oceanographic Meteorological Automatic Device (NOMAD); precipitation chemistry networks; United States Environmental Protection Agency (EPA); Rene Males; American Meteorological Society (AMS); Helmut Landsberg; carbon dioxide; climate research; Geophysical Monitoring for Climate Change (GMCC); Ralph Cicerone; George Hidy; Richard Anthes; Warren Washington; National Center for Atmospheric Research (NCAR); Ralph Perhac; Peter Mueller; North American Regional Climate Change Assessment Program (NARCCAP); Climate Simulation Laboratory; National Oceanographic and Atmospheric Administration (NOAA); Ann Henderson-Sellers; Tom Wigley; Intergovernmental Panel on Climate Change (IPCC); Dick Balzhiser.