The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact [email protected].
The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact [email protected].
The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact [email protected].
In this interview, David Zierler, Oral Historian for AIP, interviews Thomas Mason, professor of chemistry and biochemistry at UCLA. Mason recounts his childhood in Frederick, MD, and he describes the influence of his father, who was a zoologist. Mason discusses his undergraduate education at the University of Maryland where he pursued a dual degree in physics and electrical engineering, and he describes the opportunity that led to his graduate work at Princeton. He explains his work at Exxon Research and Engineering Lab, where he worked with Dave Weitz, and he describes the growth of soft matter condensed physics. Mason discusses his dissertation in micro-rheology and some of the broader questions in Brownian systems when colloids are micro-dispersed. He describes his postdoctoral work in France with Jerome Bibette, where he focused on the science of emulsification, and he discusses his senior postdoctoral position at Johns Hopkins, where he worked with Scot Kuo who was concentrating on the rheology of concentrated DNA. Mason explains his decision to join Exxon as a principal investigator, where he researched asphaltenes, and he discusses some of the broader advances in soft matter physics fostered at the Exxon lab. He describes his motivations for returning to academia, and in particular his desire to teach, he explains the opportunity leading to his tenure at UCLA, and he describes his contributions to the NanoSystems Institute. Mason discusses his involvement in many of the clinical and therapeutic aspects of soft matter physics, and at the end of the interview, he offers insight on where his broad interests in platform technologies might be relevant as his field continues to grow.
Interview with William Gelbart, Distinguished Professor of Chemistry and Biochemistry at UCLA. The interview begins with Gelbart discussing his research pertaining to COVID-19 and creating a vaccine. Gelbart then recounts his childhood in New York and describes growing up with a mathematician father. He takes us through his undergraduate years at Harvard where he majored in chemistry and physics. Gelbart speaks about his grad school experience at the University of Chicago and the trends in chemical physics at the time. He describes working under the mentorship of Stuart Rice, Karl Freed, and Joshua Jortner. Gelbart then details the factors that led him to a postdoctoral fellowship in Paris, followed by a postdoctoral position at UC Berkeley, at which time he transitioned into physical chemistry. Gelbart also discusses his subsequent move to UCLA and his collaborations with Avi Ben-Shaul. He explains his shift into biology and virus research, and his recent work on RNA gene expression and cancer vaccine research.
Interview with Steven Kivelson, Prabhu Goel Family Professor of Physics at Stanford University. Kivelson recounts his childhood in Los Angeles as the son of academic scientists, and he describes his transition from career ambitions in the law toward physics. He discusses his undergraduate experience at Harvard, and he describes his lack of appreciation of the stature of many of the physics professors, such as his advisor Paul Martin, whom he knew first as a friend of his parents. Kivelson explains his decision to continue at Harvard for his graduate degree, and he discusses how he developed his interest in amorphous semiconductors under the guidance of Dan Gellat. He recounts his postdoctoral work at UC Santa Barbara, where he worked with Bob Schrieffer on the physics of conducting polymers. Kivelson discusses his first faculty position at Stony Brook, and he discusses the excellent group of graduate students he advised during his tenure there. He discusses some of the broader research questions in condensed matter of the time, including the significance of macroscopic quantum tunneling, invented by Tony Leggett. Kivelson explains his reasons for moving to UCLA, and he discusses Ray Orbach’s efforts to make recruitment a priority there. He discusses his long interest in fractionalization with regard to conducting polymers to be generalized to spin liquids, and his move to Stanford, which attracted him in part because of the condensed matter experimental group. At the end of the interview, Kivelson discusses his current research interests in exploring well-controlled solutions of paradigmatic models of strongly correlated electron systems, and he explains why the concept of a grand unified theory of physics is not a scientific but rather a religious proposition.
Interview with Robert Jennings, retired since 2018 from the FDA’s Center for Devices and Radiological Health, where he was a research physicist. He recounts his childhood in Southern California and the formative influence of Sputnik on his physics education. Jennings discusses his undergraduate experience at Occidental and his master’s work at UCLA, and he describes his postgraduate work at the NASA Ames Research Center where he worked on optical detectors. He explains his decision to pursue a PhD at Dartmouth where he studied under John Merrill and worked on Tonks-Dattner resonances. Jennings describes the circumstances leading to his postdoctoral research in Brazil at the Institute of Atomic Energy, where he worked on medical radiation in the Division of Solid-State Physics. He discusses his subsequent research with John Cameron at the University of Wisconsin’s Medical Physics section to develop spectroscopy systems. Jennings explains that the expertise he developed in radiation and modeling in Wisconsin served as his entrée to the FDA ,which excited him as the place where the most impactful research was happening at the time. He surveys the major projects he was involved with over his career, including human visual signal detection, quality assessment of medical devices, improving mammography diagnostics, tomosynthesis, and CT scanners. At the end of the interview, Jennings surveys the fundamental developments that have advanced over the course of his forty-plus year career at FDA, his major contributions in tissue simulation science, and why he believes AI will become increasingly central to advances in medical imaging.
Interview with Eli Yablonovitch, Professor of Electrical Engineering and Computer Sciences at UC Berkeley. He talks about the overlap of these fields with applied physics, and he recounts his family’s Jewish heritage in Europe and his origin as a Displaced Person born to refugee parents after World War II. Yablonovitch describes his childhood in Montreal, his early interests in science, and his undergraduate experience at McGill where he first became interested in transistors. He explains his decision to attend Harvard in Applied Physics for graduate school to and the intellectual influence of Mike Tinkham. Yablonovitch discusses his thesis research on semiconductor optics and four-wave mixing, and he describes the opportunities that led to his postdoctoral work at Bell Labs to work on laser-based communications systems. He discusses his return to Harvard as a faculty member and his subsequent solar research work at Exxon. Yablonovitch discusses his formative collaboration with Sajeev John and his move to UCLA, and he explains how the rise of the internet fostered his entrepreneurial instincts. He describes his work to improve cellphone antennae and his decision to transfer to Berkeley and the origins of Alta Devices. Yablonovitch describe his current interests in circuits and chips and he shares his view on China’s work in basic science. At the end of the interview, Yablonovitch reflects on outliving many tech companies, some of the intractable challenges of solar energy, and why Feynman’s lectures remain a guiding light for his own interests.
In this interview, Paul Chaikin, Silver Professor of Physics at NYU, recounts his childhood in Brooklyn and he describes his early interests in math and science and his education Stuyvesant High School. He discusses his undergraduate education at Caltech, he conveys how special it was to learn from Feynman and Pauling, and he explains the fields that would go on to form his area of specialty, soft matter physics. Chaikin explains his reasoning to pursue a graduate degree with Bob Schrieffer at Penn, where he did his thesis research on the Kondo effect in superconductors. He describes his first postgraduate work at UCLA where he developed an expertise in thermoelectric power, and he describes the intellectual and technological developments that paved the way for the creation of soft matter physics as a distinct field. Chaikin explains what it would take to solve the many-body problem of nonequilibrium phenomena, and he describes the delicate nature of collaborating with biologists while ensuring they don’t overtake the field. He discusses his joint appointment with Penn physics and the research laboratory at Exxon, and he explains his move to Princeton, which was just starting to develop a program in soft matter physics. Chaikin describes the famous experiment that discovered that M&M shapes (ellispoids) provided the most efficient and minimal negative space in packing applications, and he explains his decision to join the faculty at NYU. At the end of the interview, Chaikin reflects on some of the remaining mysteries in the field, and he describes his interest in pursing research on self-assembly among soft condensed matters.
Philip Pincus is a Distinguished Professor of Materials, Physics, and Biomolecular Science at UC Santa Barbara. In this interview, he explains the origin of his nickname “Fyl,” he recounts his childhood in San Francisco, as well as his decision to study physics at Berkeley and his mentorship by Charlie Kittel. Pincus describes his thesis research on temperature dependence of anisotropy energy, and nuclear spin relaxation in magnetic materials. He describes his postdoctoral work at Saclay and his faculty appointment at UCLA, and he describes working with de Gennes and Alan Heeger. Pincus describes his contributions to dirty type II superconductors and the excitement surrounding early research on liquid crystals. He explains his decision to join the research lab at Exxon Mobil and he describes the basic science research culture there and his increasing focus on soft matter physics, which he continued to pursue at UC Santa Barbara in the Chemical Engineering Department. Pincus discusses his current interests in water and cohesive energy, and at the end of the interview, he reflects on the growth of soft matter physics out of his original interest in solid state physics, and he explains why condensed matter theorists might have something to offer dark matter research.