Interview with George Paulikas, retired Executive Vice President of the Aerospace Corporation. Paulikas describes his birth country of Lithuania and his family’s experiences in World War II and the convoluted path that brought his family to the United States in 1949. He recounts his teenage years in Chicago and his undergraduate education, at the University of Illinois, first at Chicago and then Champaign-Urbana where he majored in engineering physics. Paulikas discusses his graduate research at UC Berkeley where he focused on plasma physics under the direction of Ken Watson, he describes his first job at Aerospace as a member of the Space Physics Laboratory, and he explains the historical origins of the corporation, and its key mission to assist the U.S. Air Force in the planning, development, acquisition, and operations of national security space systems. Paulikas describes his ascent at Aerospace as Lab Director and the emphasis on basic research that ensured his integration with the broader space physics community. He explains the circumstances of being named Vice President of the Laboratories, then Vice President of the Development Group, where he focused on planning functions future Air Force systems. Paulikas describes Aerospace as a Federally Funded Research and Development Center and he discusses some of the major projects at the corporation, including the Manned Orbiting Laboratory, the Space Transportation System, the creation of GPS, and its involvement in Reagan’s SDI program. He discusses his subsequent role as Senior Vice President of Programs and his focus on getting space launches right before he was named Executive Vice President. At the end of the interview, Paulikas reflects on how Aerospace responded to the end of the Cold War and its increasing emphasis on space exploration, and he emphasizes his pride in his record of mentorship.
In this interview, David Zierler, Oral Historian for AIP, interviews Gordon Kane, Victor Weisskopf Distinguished Professor of Physics at the University of Michigan. He explains why came to hold a chair in Weisskopf’s honor and he describes his affiliation with the Leinweber Center for Theoretical Physics. Kane recounts his childhood in Minnesota and the opportunities that led to his enrollment in physics at MIT and his graduate work at Illinois to work with J.D. Jackson. He explains that the major topic in particle theory during his graduate work was understanding nucleon scattering and the significance of Geoff Chew’s bootstrap mechanism. Kane talks about his contribution to the discovery of the omega minus at Brookhaven and his research at the Rutherford Lab. He explains his decision to join the faculty at Michigan and his interest in group theory because of the advances made by Murray Gell-Mann. Kane describes the early work in the search for physics beyond the Standard Model, and he explains the value of string theory at the Planck scale. He discusses the possible new physics that would have been discovered at the SSC and why compactified M theory offers a plausible path to moving beyond the Standard Model. Kane explains why string theory is testable and why string theory predicts axions, he offers some possible candidates for dark matter and what compactified M theory offers cosmic inflation. At the end of the interview, Kane discusses his current interests in quark masses and charge leptons, he explains some of the advantages inherent in teaching at a large public university, and he describes why communicating science to popular audiences has always been important to him.
The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact [email protected].
The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact [email protected].
Interview with Dale Van Harlingen, Professor of Physics at the University of Illinois, Urbana-Champaign. He recounts his childhood in Ohio and his undergraduate education at OSU in physics and his early work on SQUIDS. Van Harlingen discusses his mentor Jim Garland, and he explains his decision to stay at OSU for graduate school to develop SQUID devices to make phase-sensitive measurements. He explains the opportunities that gained him a postdoctoral appointment at the Cavendish Laboratory in Cambridge where he developed his expertise in the Josephson Effect, and where he met John Clarke, who offered him a subsequent postdoctoral position at UC Berkeley. Van Harlingen describes his foray using SQUIDS to push the quantum limit, and he explains his decision to join the faculty at Illinois, where he was impressed both with the quality of the research and how nice everyone was. He describes joining the Materials Research Laboratory and the development of the Micro and Nanotechnology Laboratory, and he conveys his admiration for Tony Leggett. Van Harlingen discusses his research in NMR microscopy, grain boundary junctions, scanning tunneling microscopy, vortex configurations, and he describes his current interest in unconventional superconductors. At the end of the interview, Van Harlingen conveys his excitement about the national quantum initiative as a major collaboration between universities and National Labs, and he explains his motivation to understand if Majorana fermions actually exist.
Interview with Dr. Elliot H. Lieb, professor of physics emeritus and professor of mathematical physics at Princeton University. Lieb opens the interview discussing the primary differences between physical mathematics and mathematical physics, and he outlines how modern mathematical ideas have been used in physics. The interview then looks to the past, to Lieb’s childhood and adolescence in New York City, where his passion for physics began. Lieb discusses his experience as a student at MIT, particularly his political involvement during the McCarthy Era. He also mentions his time working at Yeshiva University, and compares the political sentiment there to that at MIT and other universities around the United States. He talks about the work he was able to do abroad in the United Kingdom, Japan, and Sierra Leone, and about the lessons he learned from each of these experiences. Eventually, Lieb returned to Boston and joined the applied math group at MIT, while also working on the six-vertex ice model. In 1975, Lieb moved to Princeton, where he has collaborated with a number of scientists on a variety of topics and papers, including the 1987 AKLT Model (Affleck, Kennedy, Lieb, and Tasaki). The interview ends with Lieb looking to a future of continued experimentation and collaboration on the subjects that interest him most.
Interview with Matthew Fisher, professor of physics at UC Santa Barbara. Fisher recounts his early childhood in London as the son of a prominent physicist, and his upbringing in Ithaca where his father was on the physics faculty. He discusses his undergraduate experience at Cornell, where he started in engineering but gravitated toward physics, and he reflects on a conversation with a graduate student, which – more than any influene from his father or his brother, also a prominent physicist – sparked his interest. Fisher describes his initial graduate work at MIT, where he focused on experimental condensed matter research in the lab of Bob Birgeneau, before he transferred to the University of Illinois at Champaign-Urbana to re-focus on condensed matter theory, with a special interest in quantum mechanics under the direction of Tony Leggett. He explains the mental health issues he began to suffer from in graduate school, which extended into his postdoctoral, and then full time, work at IBM, until a psychiatrist prescribed him medication that essentially restored him to a state of mental health. Fisher describes the opportunities leading to his faculty appointment at UC Santa Barbara, and he discusses his newfound interests in high temperature superconductors, the fractional quantum Hall effect, and the localization of bosons. He discusses his ongoing interest in quantum mechanics, quantum spin liquids and quantum phase transitions, and he describes his long term collaboration with Charlie Kane. Fisher explains the singular advances Phil Anderson made to the field, and what supercomputing has allowed in the last twenty years that was not possible in the previous twenty years. He connects his mental health challenges with his recent interests in the concept of a quantum mind, or the possibility that the brain operates quantum mechanically. Fisher stresses that the field is nascent and that it is too early to tell if his preliminary ideas will be substantiated, and why a greater understanding of both evolution and the nature of consciousness is crucial to developing of this path of inquiry. He explains the implications of the notion of free will if the brain operates according to quantum processes, and he describes how this research may bear out experimentally.
Interview with William Herrmannsfeldt, Staff Physicist at SLAC. Herrmannsfeldt recounts his German heritage, his upbringing in Ohio, and his early interests in physics which he pursued as an undergraduate at Miami University. He discusses his graduate work on beta decay and nuclear physics at the University of Illinois, under the direction of James Allen, and he describes his postdoctoral appointment at Los Alamos where he made detectors for bomb tests. Herrmannsfeldt explains the connection between his work at Los Alamos on electron optics and his initial research at SLAC, and he describes his work on linear accelerators. He describes his tenure as Secretary of the Advanced Development Group and his role at the AEC to concentrate on accelerator physics for Fermilab. Herrmannsfeldt explains the decision to move ahead with the PEP project and his LINAC work at Berkeley. Herrmannsfeldt explains the relevance of this research to nuclear fusion, and he describes some of the technical challenges in building the superconducting RF system. At the end of the interview, Herrmannsfeldt conveys the sense of fun he felt in learning new technological systems, the inherent challenges of beam dynamics, and he reflects on how SLAC has changed since its inception.
Interview with Philip Phillips, Professor of Physics at the University of Illinois Urbana-Champaign. Phillips recounts his early childhood in Tobago and the circumstances of his family’s move to Washington State. He conveys his bemusement at having no degree in physics, as his graduate work at the University of Washington was in chemistry, where he completed a PhD on fluorescence lifetimes in single molecules under the direction of Ernest Davidson, and where David Boulware provided the intellectual entrée to physics. Phillips explains the opportunities that allowed him to pursue postdoctoral work at Berkeley and learning RG from Orlando Alvarez. He describes his first faculty position in the chemistry department at MIT, some of the research challenges given that his primary interests were in physics, and his feeling that MIT was at the time not a very inclusive atmosphere. Phillips discusses his work on the random dimer model and the happenstance opportunity that led to his faculty appointment at Illinois. He explains getting involved with the National Society of Black Physicists and his efforts to make the department more diverse. Phillips describes the research that was recognized by the Edward Bouchet award and why Tony Leggett is among the few physicists who truly understands Mottness. He discusses advances in strongly coupled electron systems and he explains why he dislikes the term condensed matter and prefers solid-state. Phillips reflects on STEM’s response to the racial strife over the past year, and he discusses his current interests in pseudogaps. At the end of the interview, Phillips conveys his dream to solve the Hubbard model and to make advances in high-Tc research.
Interview with Stuart Shapiro, Professor of Physics and Astronomy at the University of Illinois at Urbana-Champaign. Shapiro discusses the relationship between physics and astronomy at Illinois and the shifting boundaries between cosmology, astrophysics, and astronomy. He recounts his childhood in Connecticut and his fascination with the space race. Shapiro describes his undergraduate experience at Harvard in the late 1960s and the import of the discovery of the cosmic wave background. He explains his interest in general relativity as the motivating factor for his choice of Princeton for graduate work, where he worked under the direction of Jim Peebles on gas accretion onto black holes. Shapiro describes his postdoctoral appointment at Cornell and the formative collaboration he developed with Saul Teukolsky. He describes the computational advances that propelled the field of numerical relativity and how his interactions with Kip Thorne provided an early entrée to the LIGO endeavor. Shapiro explains how he and Teukolsky challenged the cosmic censorship hypothesis and how Penrose responded to this challenge. He explains his decision to join the faculty at Illinois where he continued to work on neutrino astrophysics and the prospects for observation of hypermassive neutron stars. Shapiro explains his motivations in writing "Numerical Relativity" and he compares his reactions to the detection of gravitational waves with LIGO and the imaging of a black hole with the Event Horizon Telescope. At the end of the interview, Shapiro surveys his current interests in the dynamical problems associated with dark matter. He also conveys his deep love of sports and some unlikely coincidences he has experienced in his many years of being a fan.