University of Michigan

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Thomas Witten, Homer J. Livingston Professor, Emeritus, in the Department of Physics, James Franck Institute. Witten recounts his childhood in Maryland, Utah, and then Colorado, as his father, a medical doctor moved jobs, and he describes his undergraduate experience at Reed College and where majored in physics and where he benefited from excellent attention from the professors. He discusses his graduate work at UC San Diego, where he was advised by Shang Ma working on two-dimensional charged Bose gas research, and he describes his postdoctoral research at Princeton to work with John Hopfield. Witten conveys the exotic nature of Ken Wilson’s ideas on renormalization during that time, and he explains the origins of soft matter physics as a distinct field and his work at Saclay before joining the faculty at the University of Michigan. He describes his subsequent research on pushing concepts of renormalization into polymers and related work on the Kondo effect. Witten explains his decision to join the research lab at Exxon, and he conveys Exxon’s emulation of Bell Labs as a place where he could pursue basic science within an industrial research lab, and where he could continue his work on polymers. He describes the downsizing of the lab and his decision to join the faculty at the University of Chicago, and his discusses his developing interests in buckyballs and capillary flow. Witten describes his affiliation with the James Franck Institute and its rich history, and he explains his current interests in granular materials, thin sheets, and colloidal rotation. At the end of the interview, Witten emphasizes the technological impact of fast video on soft matter physics and his interest in the physics of crumpling objects.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Gordon Kane, Victor Weisskopf Distinguished Professor of Physics at the University of Michigan. He explains why came to hold a chair in Weisskopf’s honor and he describes his affiliation with the Leinweber Center for Theoretical Physics. Kane recounts his childhood in Minnesota and the opportunities that led to his enrollment in physics at MIT and his graduate work at Illinois to work with J.D. Jackson. He explains that the major topic in particle theory during his graduate work was understanding nucleon scattering and the significance of Geoff Chew’s bootstrap mechanism. Kane talks about his contribution to the discovery of the omega minus at Brookhaven and his research at the Rutherford Lab. He explains his decision to join the faculty at Michigan and his interest in group theory because of the advances made by Murray Gell-Mann. Kane describes the early work in the search for physics beyond the Standard Model, and he explains the value of string theory at the Planck scale. He discusses the possible new physics that would have been discovered at the SSC and why compactified M theory offers a plausible path to moving beyond the Standard Model. Kane explains why string theory is testable and why string theory predicts axions, he offers some possible candidates for dark matter and what compactified M theory offers cosmic inflation. At the end of the interview, Kane discusses his current interests in quark masses and charge leptons, he explains some of the advantages inherent in teaching at a large public university, and he describes why communicating science to popular audiences has always been important to him.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Margaret Murnane, professor of physics at the University of Colorado, Boulder, fellow at JILA, and director of the NSF STROBE Science and Technology Center. Murnane recounts her childhood in Ireland and emphasizes that, culturally, she was encouraged to pursue her interests in science from a young age. She discusses her undergraduate education at University College Cork where she focused on physics and developed her specialties in experimentation with light. Murnane describes the opportunities leading to her graduate work at UC Berkeley, where, for her thesis research, she developed a high-power femtosecond laser to create X-ray emitting plasma. She describes her first faculty appointment at Washington State University in Pullman where she continued work in ultrafast laser science, and she explains the decision to transfer to the University of Michigan at the Center for Ultrafast Optics. Murnane discusses her subsequent decision to join the faculty at JILA, where the instrumentation and opportunities for collaboration in her field were peerless. She describes the centrality of achieving very fast X-ray pulses to her field, and she describes some recent advances in applications such as EUV lithography. Murnane discusses the work that remains to be done to ensure that STEM promotes diversity and inclusivity, and she reflects on the many excellent graduate students she has mentored. At the end of the interview, Murnane conveys her excitement at the possibilities offered in the future of ultrafast lasers, including the ability of real-time microscopes that can make three-dimensional nanoscale and A-scale movies.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Marcelle Soares-Santos, assistant professor of physics at the University of Michigan. Soares-Santos recounts her childhood in Brazil, her early interests in science, and her graduate work in physics at the University of São Paulo. She describes her graduate visit to Fermilab to study galaxy clusters as a way to map the history of the expanding universe, which formed the basis of her thesis research. Soares-Santos discusses her return to Fermilab as a postdoctoral researcher, where she joined the Dark Energy Survey, and she explains how DES is getting us closer to understanding what dark energy is. She describes Fermilab’s broad-scale transition into astrophysics, and she explains the opportunities that led to her faculty appointment first at Brandeis before moving to Michigan. Soares-Santos discusses her current work in gravitational waves, and she prognosticates on what the discovery of dark energy (or energies) will look like. She shares her perspective on recent efforts to improve diversity and inclusivity in STEM. At the end of the interview, Soares-Santos explains why observation is leading theory in the current work of astrophysics and cosmology and why she is optimistic for fundamental advances in the field.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Christopher Monroe, Gilhuly Family Distinguished Presidential Professor of Physics and Electrical Computer Engineering at Duke University. Monroe discusses his ongoing affiliation with the University of Maryland, and his position as chief scientist and co-founder of IonQ. He discusses the competition to achieve true quantum computing, and what it will look like without yet knowing what the applications will be. Monroe discusses his childhood in suburban Detroit and his decision to go to MIT for college, where he focused on systems engineering and electronic circuits. He explains his decision to pursue atomic physics at the University of Colorado to work under the direction of Carl Wieman on collecting cold atoms from a vapor cell, which he describes as a “zig zag” path to Bose condensation. Monroe discusses his postdoctoral research at NIST where he learned ion trap techniques from Dave Wineland and where he worked with Eric Cornell. He explains how he became interested in quantum computing from this research and why quantum computing’s gestation period is stretching into its third decade. Monroe explains his decision to join the faculty at the University of Michigan, where he focused on pulsed lasers for quantum control of atoms. He describes his interest to transfer to UMD partly to be closer to federal entities that were supporting quantum research and to become involved in the Joint Quantum Institute. Monroe explains the value of quantum computing to encryption and intelligence work, he describes the “architecture” of quantum computing, and he narrates the origins of IonQ and the nature of venture capitalism. He discusses China’s role in advancing quantum computing, and he describes preparations for IonQ to go public in the summer of 2021. At the end of the interview, Monroe discusses the focus of the Duke Quantum Center, and he asserts that no matter how impressive quantum computing can become, computer simulation can never replace observation of the natural world.

Interviewed by
David Zierler
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Robert Cahn, Senior Scientist Emeritus at the Lawrence Berkeley Laboratory. Cahn recounts his childhood in the San Francisco area, and he describes his early interests in math and science, and he describes his undergraduate experience at Harvard, where he was influenced by Dan Kleppner and Ed Purcell. Cahn describes his summer internship at SLAC, and his travel experiences in Europe after graduating. He describes his decision to pursue graduate work at Berkeley and he explains the political tumult that had convulsed the campus in the late 1960s. Cahn discusses his work with Dave Jackson on Regge theory and his postdoctoral work at SLAC, which was focused on quark research. Cahn describes his work at the University of Washington, where he collaborated with Lowell Brown, and he explains his decision to join the physics faculty at University of Michigan, where he collaborated on several projects with Gordy Kane and where he became interested in parity violation in atoms. Cahn explains his decision to move to UC Davis, and he describes the opportunity at LBL that presented itself shortly thereafter. Cahn describes the way LBL has been integrated with the physics department at Berkeley, and he discusses his tenure as Director of the Physics division. At the end of the interview, Cahn describes LBL’s increasing involvement in cosmology, the fundamental discoveries that have been made over the course of his career, and he considers some of the philosophical or metaphysical issues that arise in investigating how the universe works.

Interviewed by
David Zierler
Interview date
Location
video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Warren Moos, Professor Emeritus in the Department of Physics and Astronomy at Johns Hopkins. Moos recounts his childhood on Long Island, he describes his undergraduate experience at Brown and what it was like to witness major advances in BCS theory. He explains his decision to pursue graduate work in physics at the University of Michigan, where he studied under Dick Sands, who was doing paramagnetic resonance. Moos discusses his postdoctoral work at Stanford with Arthur Schawlow who had hired him to build a lab to study selective excitation of chemical bonds. He describes his early years on the faculty at Johns Hopkins, and he describes the department's leading program in rare earth materials led by Gerhard Dieke. Moos discusses his involvement in satellite launches in the mid-1960s and he explains some of the structural reasons why the U.S. was in a leadership position during the early space race. He discusses the origins of the Space Telescope Science Institute and the related merging of astronomy into the physics department. Moos discusses his contributions to the field of ultraviolet spectroscopy, and its value to space missions. He describes the partnership NASA and Hopkins have maintained over the decades, he describes his tenure on the board of Associated Universities, Inc., and he provides an overview of the European Space Agency and European Southern Observatory. At the end of the interview, Moos reflects on the value of his broad education and research agenda, and he emphasizes the importance of taking on new projects over the course of his career.

Interviewed by
David Zierler
Interview date
Location
Teleconference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Samuel C.C. Ting, Thomas D. Cabot Professor of Physics at MIT and Guest Professor of the Director General of CERN. Ting describes his long-term, unpaid affiliations with CERN and DESY, he recounts his childhood in Michigan, and he describes the opportunities that led to his parents to pursue graduate degrees at the University of Michigan. He explains why he returned with his parents to China before the Second World War, and he describes his family’s experiences during the war. Ting describes his own decision to return to the United States for his undergraduate studies after his family fled from the mainland to Taiwan in 1948, where he lived for eight years, before enrolling in the engineering program at the University of Michigan. He conveys his love for Michigan football, his near brush with the draft, and he explains his decision to remain at Michigan for graduate school. Ting explains his decision to focus on experimentation after initially considering theory, and he discusses his work on the Bevatron at the Lawrence Radiation Laboratory in Berkeley. He describes his dissertation research on pion proton elastic scattering, and his contribution to the finding that that diffraction peak of this scattering does not shrink with increased energy. Ting explains the opportunities that led to his work at CERN to work on proton-proton scattering with Giuseppe Cocconi, and his positive experiences as a junior faculty member at Columbia University. He explains his collaboration with Stanley Brodsky and this connection with his work at DESY, and he relates Feynman’s humorous congratulatory telegram shortly after he won the Nobel Prize on the J particle. Ting explains the significance of this work, and that of Burt Richter at SLAC whose work was entirely independent from Ting’s. He explains his decision to deliver his Nobel acceptance speech in Mandarin, he describes the challenges of distraction owing to the recognition, and he explains how he became interested in space-based experiments. He discusses his increasing involvement with NASA and the Department of Energy (DOE) in pursuing his goal of large-scale experiments, where he has concentrated on measuring the spectrum of electrons. He explains the origins and outlook for the Alpha Magnetic Spectrometer (AMS), and he projects that attaining higher energies will continue to advance fundamental discovery which will serve as complements to land-based accelerator experiments. Ting discusses the discovery of the gluon by the Positron-Electron Tandem Ring Accelerator (PETRA) collaboration, and the influence of his research on the standard electroweak model, and he reflects on what it will take to understand dark matter. At the end of the interview, Ting expresses gratitude for the support he has received from MIT over the course of his career, and he makes the case for why governments should continue to support basic science research, even in fields for which no immediate benefit to humanity is readily apparent. 

Interviewed by
Sean F. Johnston
Interview date
Location
Environmental Research Institute of Michigan (ERIM), Ann Arbor, Michigan
Abstract

This interview focuses on his career in holography and the evolution and interactions of Ann Arbor institutions developing holography, including Willow Run Laboratories, Environmental Research Institute of Michigan (ERIM) and the General Dynamics Corporation.

Interviewed by
David DeVorkin
Interview date
Location
Van Vleck Observatory, Wesleyan University, Middleton, Connecticut
Abstract

Interview covers early education in Minneapolis and Washington, D.C. and early interests in astronomy and science; early contact with H. Luyten (1940); graduate school at the University of Michigan and continuation of graduate work at Case; Jason Nassau and galactic structure; research positions at Swarthmore and the Naval Observatory; move to Wesleyan, 1966; teaching and astrometric research; the FAR: Fund for Astrophysical Research; the restoration of Clark telescopes; influential astronomers: W. Luyten, P.van de Kamp, K.A. Strand, S. McCuskey, Bart Bok; professional conditions at Wesleyan.