Beta decay

Interviewed by
Joanna Behrman
Interview dates
April 30 & May 8, 2020
Location
Video conference
Abstract

In these interviews, Joanna Behrman, Assistant Public Historian for AIP, interviews Steven Moszkowski, Professor Emeritus at the University of California, Los Angeles. He describes his family background and childhood in Germany. Moszkowski recounts how he and his family, particularly his grandparents, were friends of Albert Einstein. He recalls the rise of the Nazis and how he and his parents emigrated to the United States. He describes joining the Army after high school and being transferred to work at the Metallurgical Laboratory under Robert Sachs. He explains how he became interested in nuclear physics and earned his Ph.D. under Maria Goeppert-Mayer. Moszkowski describes working with Chien-Shiung Wu at Columbia on beta decay and coauthoring a book together. He recounts moving from Columbia to UCLA where he also consulted for the Rand Corporation and the Lawrence Livermore National Laboratory. He discusses the evolution of research on nuclear models including Goeppert-Mayer’s shell model and his own interest in the nuclear many-body problem. Moszkowski explains the origins of the division between nuclear theorists and particle theorists. He describes how he generalized Goeppert-Mayer’s delta interaction and named it the surface delta interaction which became a focus of research for many years. He then describes the social and personal upheavals he experienced during the 1960s He recounts the importance of travel and collaboration in his research, particularly his travel to Hungary, the European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*) in Trento, and the University of Coimbra in Portugal. He recalls his interactions with many colleagues in physics including Judit Nemeth, Yoichiro Nambu, Murph Goldberger, and Murray Gell-Mann. Moszkowski describes his impressions on the status of women in physics and his biography of Goeppert-Mayer as part of a volume edited by Nina Byers and Gary Williams. Moszkowski concludes with his impressions of Enrico Fermi, Leo Szilard, Werner Heisenberg, Nambu, and Hans Bethe.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Steven Weinberg, Jack S. Josey-Welch Foundation Chair in Science and Regental Professor at the University of Texas at Austin. The focus of the interview is on how and when Weinberg became interested in cosmology, and how he defines it as a distinct discipline from astronomy and astrophysics. Weinberg explains that between the intensity of interest in particle physics in the 1950s and the speculative nature of cosmology, he had neither the interest nor the outlet to pursue cosmology in a rigorous way. He discusses some of the theoretical and experimental limitations at the time that kept cosmology in a largely “mystical” realm, and why the discovery of the microwave background by Penzias and Wilson “changed everything.” Weinberg explains what new questions can be considered as a result of evidence for a hot early universe, and he discusses when he first became interested in the formation of galaxies. He describes why the cosmological constant has bothered him for a long time, and he traces this problem back to Einstein and what Weinberg considers Einstein’s incorrect approach to his own theory. Contrasting his own experience as a graduate student, he cites John Preskill as his first student to pursue cosmology, and he explains that while his interests in particle physics and cosmology are generally separate, he always looks for intersecting research opportunities, which is well represented in the relevance of beta decay physics in the first three minutes of the universe. At the end of the interview, Weinberg surveys the value and problems associated with the term “Big Bang,” and he reflects on his career-long effort not to be dogmatic in his views on cosmology.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with William Herrmannsfeldt, Staff Physicist at SLAC. Herrmannsfeldt recounts his German heritage, his upbringing in Ohio, and his early interests in physics which he pursued as an undergraduate at Miami University. He discusses his graduate work on beta decay and nuclear physics at the University of Illinois, under the direction of James Allen, and he describes his postdoctoral appointment at Los Alamos where he made detectors for bomb tests. Herrmannsfeldt explains the connection between his work at Los Alamos on electron optics and his initial research at SLAC, and he describes his work on linear accelerators. He describes his tenure as Secretary of the Advanced Development Group and his role at the AEC to concentrate on accelerator physics for Fermilab. Herrmannsfeldt explains the decision to move ahead with the PEP project and his LINAC work at Berkeley. Herrmannsfeldt explains the relevance of this research to nuclear fusion, and he describes some of the technical challenges in building the superconducting RF system. At the end of the interview, Herrmannsfeldt conveys the sense of fun he felt in learning new technological systems, the inherent challenges of beam dynamics, and he reflects on how SLAC has changed since its inception. 

Interviewed by
Charles Weiner
Interview date
Location
Altadena, California
Abstract

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.

Interviewed by
David Zierler
Interview date
Location
video conference
Abstract

Reina Maruyama, Associate Professor of Physics at Yale, is interviewed by David Zierler. Maruyama discusses her appointments in the Yale Quantum Institute and her role as chair-elect for the Yale Women Faculty Forum. She recounts childhood in Japan and the circumstances of her family’s move to the United States and how her interests in science helped her acclimate to American culture. Maruyama explains her decision to attend Columbia as an undergraduate and she discusses a formative summer internship at Los Alamos where she worked on atomic physics. She describes her graduate work under the direction of Norval Fortson at the University of Washington in atomic lasers and optical communications. Maruyama discusses her postdoctoral research at UC Berkeley to join the CUORE experiment to look for neutrino-less double beta decays, which in turn led to her joining IceCube at Wisconsin. She explains how this worked served as an entrée into her interests in astrophysics and cosmology, and she describes the factors that led to her joining the faculty at Yale. Maruyama discusses building her lab and the diverse research she is pursuing including many exciting developments in quantum technology, and in the last part of the interview, she explains how she hopes to contribute to solving the mystery of dark matter.

Interviewed by
Charles Weiner and Jagdish Mehra
Interview date
Location
Princeton University, Princeton, New Jersey
Abstract

Arrival in the U.S. in 1930; comparison of social, scientific, general intellectual climates in U.S and Europe; early interest in nuclear physics, relationship with graduate students; beta decay, compound nucleus model, Breit-Wigner formula, early shell model; review articles by Bethe; relation of early meson theory to nuclear physics; nuclear forces; charge independence; journal literature of physics ca. 1937; effectiveness of group-theoretic models in nuclear physics; effectiveness of quantum mechanics for nuclear physics; significant early experimental discoveries in nuclear physics: neutron, deutron, artificial radioactivity; fission, shell model of Mayer and Jensen; rotational levels in nuclei; the specialization of physics; effect of World War II on nuclear physics research; work at Chicago; conferences after the war; branching off of high-energy physics from nuclear physics; work personally regarded as interesting.

Interviewed by
Charles Weiner
Interview date
Location
Professor Gamow's home, Boulder, Colorado
Abstract

Gamow's involvement with nuclear physics. His later work in astrophysics and his interest in biology. Personal anecdotes about Gamow's childhood in Odessa, student life with Lev Landau and Dmitriy Ivanenko at the University of Leningrad, his fellowship at Göttingen, work in Copenhagen with Niels Bohr, and at University of Cambridge with Ernest Rutherford. Emigration to America in 1934, subsequent work in the United States. Work on penetration barriers, saturation, the beta decay rule, and the nuclear droplet model. Also prominently mentioned are: Hans Albrecht Bethe, Hermann Bondi, Walter Bothe, Maurice de Broglie, James Chadwick, John Cockcroft, Edward Uhler Condon, Francis Crick, Critchfield, Marie Sklodowska Curie, Max Delbrück, Paul Adrien Maurice Dirac, Paul Ehrenfest, Enrico Fermi, James Franck, Alexander Friedman, Barbara Gamow, Thomas Gold, Ronald Gurney, Fred Hoyle, Petr Kapitsa, Krutkow, Ernest Orlando Lawrence, Nikolaivitch Luchnik, Chester Nimitz, J. Robert Oppenheimer, Wolfgang Pauli, Léon Rosenfeld, Dimitri Rozhdestwenski, Martin Schwarzschild, Edward Teller, Merle Antony Tuve, James Watson, John Archibald Wheeler, A. M. Wood; Associacion Venezueliana para Promocion de la Sciencia, University of Cambridge Press, Carlsbergfondet Fellowship, George Washington University, Institut de Physique Solvay, Leningradskii gosudarstvennyi universitet imeni A. A. Zhdanova, Moscow M. V. Lomonosov State University, National Academy of Sciences (U.S.), and Odessa I. I. Mechnikov State University.

Interviewed by
Charles Weiner
Interview date
Location
Altadena, California
Abstract

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.

Interviewed by
Charles Weiner
Interview date
Location
Altadena, California
Abstract

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.

Interviewed by
Charles Weiner
Interview date
Location
Altadena, California
Abstract

Interview covers the development of several branches of theoretical physics from the 1930s through the 1960s; the most extensive discussions deal with topics in quantum electrodynamics, nuclear physics as it relates to fission technology, meson field theory, superfluidity and other properties of liquid helium, beta decay and the Universal Fermi Interaction, with particular emphasis on Feynman's work in the reformulation of quantum electrodynamic field equations. Early life in Brooklyn, New York; high school; undergraduate studies at Massachusetts Institute of Technology; learning the theory of relativity and quantum mechanics on his own. To Princeton University (John A. Wheeler), 1939; serious preoccupation with problem of self-energy of electron and other problems of quantum field theory; work on uranium isotope separation; Ph.D., 1942. Atomic bomb project, Los Alamos (Hans Bethe, Niels Bohr, Enrico Fermi); test explosion at Alamagordo. After World War II teaches mathematical physics at Cornell University; fundamental ideas in quantum electrodynamics crystalize; publishes "A Space-Time View," 1948; Shelter Island Conference (Lamb shift); Poconos Conferences; relations with Julian Schwinger and Shin'ichiro Tomonaga; nature and quality of scientific education in Latin America; industry and science policies. To California Institute of Technology, 1951; problems associated with the nature of superfluid helium; work on the Lamb shift (Bethe, Michel Baranger); work on the law of beta decay and violation of parity (Murray Gell-Mann); biological studies; philosophy of scientific discovery; Geneva Conference on the Peaceful Uses of Atomic Energy; masers (Robert Hellwarth, Frank Lee Vernon, Jr.), 1957; Solvay Conference, 1961. Appraisal of current state of quantum electrodynamics; opinion of the National Academy of Science; Nobel Prize, 1965.